

Open Framework for Experimental Setup and Control (OpenFresco)

OpenFresco Command
Language Manual

Andreas Schellenberg, Hong K. Kim, Yoshikazu Takahashi,
Gregory L. Fenves, and Stephen A. Mahin

OpenFresco.exe & OpenFresco.dll
Version 2.6

July 2009

Created on 9/26/07

Contents ii

Contents

Introduction 4
Introduction to OpenFresco ...5
Change Notes for Version 2.6..7
Notation..9
Copyright..10
Introduction to the Tcl command language..12
Tcl Commands Format ..13
Example Tcl Commands..14
Additional Tcl Resources ...15
OpenFresco Interpreter..16

expControl Commands 17
dSpace Experimental Control ..18
LabVIEW Experimental Control ...20
MTSCsi Experimental Control..21
SCRAMNet Experimental Control..23
SimDomain Experimental Control..25
SimFEAdapter Experimental Control ...27
SimUniaxialMaterials Experimental Control...29
xPCtarget Experimental Control ..31

expElement Commands 33
beamColumn (2D or 3D) Experimental Element..35
generic (1D, 2D, or 3D) Experimental Element..38
invertedVBrace (2D) Experimental Element ..40
truss (1D, 2D, or 3D) Experimental Element..42
corotTruss (1D, 2D, or 3D) Experimental Element ..44
twoNodeLink (1D, 2D, or 3D) Experimental Element...46

expSetup Commands 49
Aggregator Experimental Setup...50
FourActuators Experimental Setup ..51
InvertedVBrace Experimental Setup..53
InvertedVBraceJntOff Experimental Setup ..55
NoTransformation Experimental Setup..57
OneActuator Experimental Setup ..60
ThreeActuators Experimental Setup ..62
ThreeActuatorsJntOff Experimental Setup ..64
TwoActuators Experimental Setup...66

expSignalFilter Commands 68
ErrorSimRandomGauss Experimental Signal Filter...69
ErrorSimUndershoot Experimental Signal Filter ..70

Contents iii

expSite Commands 71
Actor Experimental Site ...72
Local Experimental Site ...73
Shadow (or Remote) Experimental Site...74

expControlPoint Command 75

expRecorder Commands 78
Control Recorder..79
Setup Recorder..81
SignalFilter Recorder ...83
Site Recorder ...84

Server Commands 86
startLabServer Command..87
startSimAppElemServer Command ...88
startSimAppSiteServer Command ...89

Miscellaneous Command 90
Basic Model Builder ...91
Node Command...92
Load OpenFresco Package ...93

Index 94

Chapter 1 Introduction 4

In This Chapter

Introduction to OpenFresco .. 5
Change Notes for Version 2.6 .. 7
Notation .. 9
Copyright .. 10
Introduction to the Tcl command language... 12
Tcl Commands Format ... 13
Example Tcl Commands... 14
Additional Tcl Resources .. 15
OpenFresco Interpreter .. 16

C H A P T E R 1

Introduction

Chapter 1 Introduction 5

Introduction to OpenFresco

Hybrid simulation provides a versatile, realistic and cost-effective method for simulating the seismic
response of structural systems experimentally. A hybrid simulation is a combination of physical
simulation of a specimen in a laboratory, using standard servo-controlled actuators, with computational
simulation of the system to simulate the overall response of the system to earthquake ground motion.

To address this important need in earthquake engineering, The Open Framework for Experimental
Setup and Control (OpenFresco) is a software system for hybrid simulation of structural systems. For
the earthquake engineering user, OpenFresco is a practical and easy to use software package that
allows a wide variety of hybrid simulation algorithms, laboratory and control systems, experimental
setups, and computational simulation models to be combined for a specific hybrid simulation. For the
researcher or developer interested in new hybrid simulation methods, the architecture of OpenFresco
provides a great deal of flexibility, extensibility, and re-usability through an object-oriented software
framework.

Figure 1: OpenFresco Software Architecture for Local (Left) and Distributed Simulation (Right).

Chapter 1 Introduction 6

The design, implementation, and proof-of-concept of OpenFresco was described in Takahashi and
Fenves (2006). Schellenberg and Mahin (2006a) used OpenFresco with the computational simulation
provided by OpenSees. Schellenberg and Mahin (2006b) applied OpenFresco to simulate structural
collapse under earthquake ground motion using hybrid simulation. Schellenberg et al. (2006c) provided
a description of the progress using OpenFresco for a range of hybrid simulation applications.

The original version of OpenFresco was tightly bound to the Open System for Earthquake Engineering
Simulation (OpenSees, 2006) for the computational simulation. To provide users a broader range of
choices of software packages for computational modeling and simulation, a generalization of
OpenFresco has been completed and released as Version 2.6. The refactored OpenFresco is similar to
the original design in Takahashi and Fenves (2006), but it is now based on a n-tier client-server
architecture. The tiers are a client, one or two middle tier servers, and a backend server (Figure 1)1. In
Figure 1, the blue box represents the finite element software for the computational simulation. The green
boxes represent OpenFresco processes, and the gray box represents the laboratory control systems.
The red box shows the processes that occur on the client side, the purple box shows the processes that
occur on the middle tier server side, and the orange box shows that which is occurring on the server
side.

As with Version 2.5 of OpenFresco, the Experimental Setup can be located on either the middle tier
server side or the server side, which provides users a great deal of flexibility in defining the experimental
configuration and control of the specimen in a laboratory.

An important aspect of OpenFresco is that the finite element software in Figure 1 uses a general form of
an element, termed the Generic-Client Element. The user does not have to create an experimental
element in the finite element software when the Generic-Client Element is used. The Generic-Client
Element can be easily implemented into any finite element software that allows user-defined elements.
This feature allows OpenFresco to be used with a wide variety of computational software packages,
such as OpenSees, Matlab, LS-DYNA, UI-SimCor, Abaqus and Simulink. For developers and advanced
users, experimental elements can be created for more sophisticated applications, but for most users
interested in hybrid simulation, the Generic-Client Element should be sufficient.

Detailed information about installing OpenFresco can be found in the “OpenFresco Installation and
Getting Started Guide”. This document also contains a simple hybrid simulation example to get the user
started. The OpenFresco example manuals contain more comprehensive examples for advanced users.
Both guides are available at

http://neesforge.nees.org/docman/index.php?group_id=36&selected_doc_group_id=36&language_id=1

Throughout this document, proprietary products for software and hardware are referred to without
endorsement.

1 For further information on the client-server architecture, see
http://www.sei.cmu.edu/str/descriptions/clientserver.html.

Chapter 1 Introduction 7

Change Notes for Version 2.6

Modeling of Experimental Elements:

The OpenFresco experimental elements act within the finite element (FE) software to represent the
portion of the structure that is physically tested in an experiment. Moreover, the experimental elements
provide the necessary interface to the analysis procedures in the FE analysis software.

In addition to the experimental elements in Version 2.5, Version 2.6 has the following features:

1. The twoNodeLink experimental element has been modified to incorporate coupled shear and
moment behavior if the length of the element is larger than zero. In addition, if the element does
not have zero length, the user can now optionally specify how the P-Delta moments around the
local x- and y-axis are distributed among a moment at node i, a moment at node j and a shear
couple. The sum of these three ratios is always equal to 1.

2. A corotTruss experimental element is now available to test truss elements considering large
displacements. A corotational formulation adopts a set of corotational axes, which rotate with the
element, thus taking into account an exact geometric transformation between local and global
frames of reference.

Representing the Setup of Experiments:

The experimental setup objects in OpenFresco are software abstractions of an experiment’s actual
setup in the laboratory. As a result, they are responsible for transforming the response quantities
between the experimental element degrees of freedom and the actuator degrees of freedom, utilizing
the geometry and the kinematics of the loading and instrumentation system, and back again.

Several improvements and additions are introduced in Version 2.6:

1. A FourActuators3d experimental setup has been added to test columns in 3D. As the name
suggests, this setup utilized four actuators to control the two translational and the two rotational
degrees of freedom of a frame specimen in 3D. The axial and the torsional degrees of freedom
are not controlled. However, the setup accounts for the effect of a constant axial load (which is
applied to the specimen with a spreader beam and two prestress rods) on the element resisting
forces. All transformations in this experimental setup are implemented as non-linear
transformations accounting for large displacements.

2. The response modification factors in the experimental setups can now be applied to the trial
response quantities before they are transformed to control signals and to the output response
quantities after they have been converted from the daq signals. This flexibility to apply factors to
trial and output response quantities in addition to control and daq response quantities was
necessary to correctly account for similitude scaling operations.

Interfacing with Controllers and Data Acquisition Systems:

OpenFresco provides a wide range of functions for communicating with the laboratory control and data
acquisition systems. The functions provide command actions in the actuator coordinate system and they
obtain measured data from the data acquisition system.

In Version 2.6, significantly new capability is provided for:

1. The deadlock problems that were encountered with xPC-Target versions newer than 3.1 have
been resolved. The xPCtarget experimental control is working flawlessly with the current
xPC-Target version 4.1 (Matlab R2009a).

2. The experimental control objects are now able to use signal filter objects to filter control and daq
response quantities and to simulate experimental errors such as overshoot, undershoot, lead,
lag or random noise.

Chapter 1 Introduction 8

Simulating Specimens (including Controllers and Data Acquisition Systems):

In order to check a hybrid model and estimate the response of a structure before running an actual test,
specimens can be simulated using the OpenFresco simulation experimental control and data acquisition
objects. Besides the existing SimUniaxialMaterial and SimDomain experimental control classes the
SimFEAdapter class has been added in Version 2.6. The SimFEAdpater object enables users to
simulate physical subassemblies and specimens in any finite element software of their choice. Adapter
elements that act as the interfaces to the slave finite element software, in which the subassemblies are
simulated, have so far been implemented for OpenSees, LS-DYNA and Abaqus. Because the adapter
element approach is not utilizing any file system to exchange data between the master and the slave
FE-software and such programs are not required to repetitively be shutdown and restarted, hybrid
simulations can be performed continuously and concurrently.

Utilizing different Computational Drivers:

To interface with a variety of finite element software packages, OpenFresco uses the three-tier software
architecture concept and a generic client element in the FE-software. A generic client element can be
implemented into any FE-software, which provides an application programming interface (API) that
allows for the addition of user-defined elements. In addition, a generic client element only needs to be
implemented once for any FE-software that is desired to be used as a computational driver for
performing hybrid simulations.

Generic client elements have been implemented for OpenSees, Matlab, LS-DYNA, UI-SimCor, Abaqus
and Simulink. The Abaqus and the Simulink interfaces are new in OpenFresco Version 2.6.

Recording Experimental Data:

The recorder classes provide means for recording response quantities from all the experimental objects
(such as elements, sites, setups and controls) that are of interest to the experimentalist. Data can be
recorded in many different formats including, ASCII format without headers, ASCII comma separated
format without headers, ASCII format including xml metadata and binary format. In addition, response
data can be recorded to databases such as SQL or Berkeley DB.

Installing the OpenFresco Software:

Because of the quickly expanding library of interfaces with controllers and data acquisition systems
supported by OpenFresco, the number of required dynamic link libraries is growing rapidly as well. In
contrast, the installation of OpenFresco for users and/or developers should be as straightforward and
flexible as possible.

In Version 2.6, the OpenFresco installer for Windows platforms, which was introduced in Version 2.5
using the NSIS (Nullsoft Scriptable Install System) professional open-source software, is employed
again. The installer provides installation options for general users as well as developers of OpenFresco.

Documentation for OpenFresco:

Several major new documents are provided in public review form for support and explanations for
different aspects of OpenFresco. These will be finalized following a brief public review period. The new
documentation accompanying Version 2.6 describes:

1. Installation of the software and getting started,

2. OpenFresco specific TCL scripting language commands,

3. Hybrid simulation examples,

4. Adaptation of FE-software packages OpenSees, Abaqus, LS-Dyna and Matlab for hybrid testing,
and

5. Generation of certificates needed for the secure communication channels.

Chapter 1 Introduction 9

Notation

The notation presented in this chapter is used throughout this document.

Input values are a string, unless the first character is a $, in which case an integer, floating point number
or variable is to be provided. In the Tcl language, variable references start with the $ character. Tcl
expressions can also be used as input to the commands where the input value is specified by the first
character being a $.

Optional values are identified in enclosing <> braces.

When specifying a variable quantity of values, the command line contains (x $values). The number of
values required, x, and the types of values, $values, are specified in the description of the command.

An arbitrary number of input values is indicated with the dot-dot-dot notation, i.e. $value1 $value2 ...

The OpenFresco interpreter constructs objects in the order they are specified by the user. New objects
are often based on previously defined objects. When specified as an object parameter, a previously
defined object must have already been added to the Domain. This requirement is specified in the
description of the command arguments.

Chapter 1 Introduction 10

Copyright

Copyright (c) 2006. The Regents of the University of California (Regents). All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for educational,
research, and not-for-profit purposes, without fee and without a signed licensing agreement, is hereby
granted, provided that the above copyright notice, this paragraph and the following four paragraphs
appear in all copies, modifications, and distributions. Contact The Office of Technology Licensing, UC
Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201, for commercial
licensing opportunities.

IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

BY USING THIS SOFTWARE, USERS ACKNOWLEDGE THAT REGENTS DISCLAIM ANY
WARRANTY, RESPONSIBILITY, OR LIABILITY FOR ERRORS, MALFUNCTION, DAMAGE, INJURY,
OR SAFETY OF ANY LABORATORY EQUIPMENT, SPECIMENS, OR PERSONNEL THAT MAY
RESULT FROM THE USE OF THIS SOFTWARE IN ITS ORIGINAL FORM OR AS MODIFIED BY ANY
PARTY.

Acknowledgement: This software is based on work supported by the National Science Foundation
(NSF) under Award Number 019796 to the University of California, Berkeley, from the San Diego
Supercomputer Center (SDSC) for Operations and Maintenance of NEES Simulation Component. It is a
component of NSF Award Number 0402490, NEES Consortium Operations: FY2005-FY2014, through
the NEES Information Technology (NEESit) Cyberinfrastructure subaward to SDSC. In addition, this
work was also supported† by the Earthquake Engineering Research Centers Program of the National
Science Foundation, under award number EEC-9701568 through the Pacific Earthquake Engineering
Research Center (PEER).

Copyright (c) 2006, Yoshikazu Takahashi, Kyoto University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Kyoto University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

Chapter 1 Introduction 11

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Chapter 1 Introduction 12

Introduction to the Tcl command language

The Tcl scripting language is used to implement the OpenFresco commands. A user issues commands
to create the objects needed for a hybrid simulation, such as experimental elements, experimental sites,
experimental setups and experimental controls, all of which are described in this manual. The Tcl
language provides useful programming tools, such as variables, mathematical expression evaluation,
and control structures, which allow a user to create scripts that define their hybrid simulation.

Tcl is a string-based scripting language which allows the following:

 Variables and variable substitution

 Mathematical expression evaluation

 Basic control structures (if, while, for, foreach)

 Procedures

 File manipulation

More information on Tcl commands can be found at its web site: Tcl/Tk Primer

http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm (http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm)

Chapter 1 Introduction 13

Tcl Commands Format

Tcl scripts are made up of commands separated by new lines or semicolon (;).

The basic syntax for a Tcl command is:

command $arg1 $arg2 ...

command name of the Tcl command or user-defined procedure

$arg1 $arg2 ... arguments for the command

Tcl allows any argument to be a nested command:

command [nested-command1] [nested-command2]

where the [] are used to delimit the nested commands. The Tcl interpreter will first evaluate the nested
commands and will then evaluate the outer command with the results to the nested commands.

The most basic command in Tcl is the set command:

set variable $value

EXAMPLE:

set a 5

The Tcl interpreter regards a command starting with the number sign (#) to be a comment statement, so
it does not execute anything following the #. For example:

this command assigns the value 5 to the variable a
set a 5

The number sign and the semicolon can be used together to put comments on the same line as the
command. For example:

set a 5; # this command assigns the value 5 to the variable a

Chapter 1 Introduction 14

Example Tcl Commands

arithmetic procedure for & foreach functions

>set a 1

1

>set b a

a

>set b $a

1

>expr 2 + 3

5

>expr 2 + $a

3

>set b [expr 2 + $a]

3

>

>proc sum {a b} {

 return [expr $a + $b]

}

>sum 2 3

5

>set c [sum 2 3]

5

>

for {set i 1} {$i < 10} {incr i 1} {

 puts “i equals $i”

}

set sum 0

foreach value {1 2 3 4} {

 set sum [expr $sum +

$value]

}

puts $sum

10

>

file manipulation procedure & if statement

>set fileId [open tmp w]

anumber

>puts $fileId “hello”

>close $fileID

>type tmp

hello

>

>source Example1.tcl

>proc guess {value} {

 global sum

 if {$value < $sum} {

 puts “too low”

 } else {

 if {$value > $sum} {

 puts “too high”

 } else { puts “you got it!”}

 }

}

 > guess 9

too low

>

Chapter 1 Introduction 15

Additional Tcl Resources

Below, are additional resources for Tcl:

http://www.freeprogrammingresources.com/tcl.html
(http://www.freeprogrammingresources.com/tcl.html)

A large list of helpful resources.

http://www.tcl.tk/man/ (http://www.tcl.tk/man/)

Tcl/Tk manual pages.

http://www.mit.edu/afs/sipb/user/golem/doc/tcltk-iap2000/TclTk1.html
(http://www.mit.edu/afs/sipb/user/golem/doc/tcltk-iap2000/TclTk1.html)

A tutorial describing many commands by describing their implementation in a short
program.

http://www.beedub.com/book/ (http://www.beedub.com/book/)

Several chapters from Practical Programming in Tcl and Tk, by Welch and Jones.

Chapter 1 Introduction 16

OpenFresco Interpreter

The main objects OpenFresco for hybrid simulation will be explained using the OpenFresco interpreter.
The interpreter is an extension of the Tcl scripting language. The OpenFresco interpreter adds
commands to Tcl for the experimental setup and control of hybrid simulations.

OpenFresco has commands for:

• Modeling – create nodes and experimental elements

• Sites – specify the experimental sites (e.g. laboratories or computational sites)

• Setups – specify what experimental setups are used in the laboratories

• Controls – specify what experimental controllers are used in the laboratories

• Signal Filters – specify how to filter experimental signals

• Recorders – specify what to record during a hybrid simulation

Chapter 2 expControl Commands 17

These commands are used to construct the expControl objects. The expControl objects are used to
interface the different control and data acquisition systems in the laboratories. In addition, these
commands can be utilized to simulate physical specimens. The expSetup objects can be defined using
the expControl objects.

In This Chapter

dSpace Experimental Control ... 18
LabVIEW Experimental Control .. 20
MTSCsi Experimental Control .. 21
SCRAMNet Experimental Control... 23
SimDomain Experimental Control... 25
SimFEAdapter Experimental Control.. 27
SimUniaxialMaterials Experimental Control.. 29
xPCtarget Experimental Control ... 31

C H A P T E R 2

expControl Commands

Chapter 2 expControl Commands 18

dSpace Experimental Control

This command is used to construct a dSpace experimental control object.

expControl dSpace $tag $type boardName <-ctrlFilters (5 $filterTag)>
<-daqFilters (5 $filterTag)>

$tag unique control tag

$type Simulink predictor-corrector model type

 1 = using Displacement

 2 = using Displacement and Velocity

 3 = using Displacement, Velocity, and Acceleration

boardName name of dSpace board (DS1103 and DS1104 are available)

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

Define experimental signal filter

expSignalFilter ErrorSimUndershoot $tag $error
expSignalFilter ErrorSimUndershoot 1 0.01

Define experimental control

expControl dSpace 1 1 DS1103 -ctrlFilters 1 0 0 0 0

The above example command is used to talk to a Simulink model which is using displacements for
prediction and correction running on a DS1103 digital-signal-processor board. ErrorSimUndershoot
signal filter is applied to the displacements that are being sent to the control system.

Figure 2: dSpace Experimental Control

Chapter 2 expControl Commands 19

The valid queries to a dSpace experimental control when creating an ExpControlRecorder object are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq forces: daqForce, daqForces

Reference:

http://www.dspaceinc.com/ww/en/inc/home/products/hw/singbord.cfm
(http://www.dspaceinc.com/ww/en/inc/home/products/hw/singbord.cfm)

Chapter 2 expControl Commands 20

LabVIEW Experimental Control
This command is used to construct a LabVIEW experimental control object. LabVIEW is a software used
to control the MTS MiniMost and LBCB at UIUC. LabVIEW uses the LabVIEW NTCP plugin
communication protocol to communicate over a single persistent TCP connection. TR-2004-58, a
NEESit document contains the specifics of the LabVIEW NTCP plugin. This command must be used in
conjunction with the expControlPoint command.

expControl LabVIEW $tag ipAddr <$ipPort> –trialCP $cpTag1 … –outCP $cpTag2 …
<-ctrlFilters (5 $filterTag)> <-daqFilters (5 $filterTag)>

$tag unique control tag

ipAddr IP address of LabVIEW computer

$ipPort IP port number of LabVIEW computer (optional, default = 44000)

$cpTag tags of previously defined control points

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

Define experimental control points

expControlPoint 1 1 ux disp -fact 0.003 -lim -0.01 0.01
expControlPoint 2 1 ux disp -fact 0.003 ux force -fact [expr 18.0/7.0]

Define experimental control

expControl LabVIEW 1 “130.126.242.175” 44000 -trialCP 1 -outCP 2

The above example command uses an IP address of “130.126.242.175” with 44000 as the port number.
-trialCP and -outCP fields use the previously defined experimental control points. For a detailed
explanation of the expControlPoint command, refer to Chapter 7 of this manual.

The valid queries to a LabVIEW experimental control when creating an ExpControlRecorder object are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control forces: ctrlForce, ctrlForces

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq forces: daqForce, daqForces

Reference:

Hubbard, P., Calderon, J., Gose, S. (2004). “Protocol Specification for the LabView NTCP plugin.”
NEESit Technical Report (TR-2004-58).

Chapter 2 expControl Commands 21

MTSCsi Experimental Control
This command is used to construct a MTSCsi experimental control object. The MTSCsi (MTS Computer
Simulation Interface) experimental control object is used to communicate with MTS hardware through
the CSI API.

expControl MTSCsi $tag cfgFile <$rampTime> <-ctrlFilters (5 $filterTag)>
<-daqFilters (5 $filterTag)>

$tag unique control tag

cfgFile path of Csi configuration file including file name with .mtscs
extension*

<$rampTime> ramp time [sec] (optional, default = 0.02)

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

NOTE: * The cfgFile field should be in quotes especially when there is a space in the path name, and
forward slashes should be used in the path name.

EXAMPLE:

expControl MTSCsi 1 “C:/MTSCsi/Example/OpenFresco_uNEES.mtscs” 0.1

The above example command uses a path of “C:/MTSCsi/Example/OpenFresco_uNEES.mtscs” and a
ramp time of 0.1 seconds.

Figure 3: MTSCsi Experimental Control

OpenFresco
MTSCsi

Chapter 2 expControl Commands 22

The valid queries to a MTSCsi experimental control when creating an ExpControlRecorder object are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control forces: ctrlForce, ctrlForces

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq forces: daqForce, daqForces

The following is an excerpt from the MTS “Computer Simulation Interface and Configurator” manual:

“The MTS Computer Simulation Interface and Configurator (CSIC) is an application which provides a
high level programming interface for users to connect their test application to an MTS controller and
execute common structural testing commands and data acquisition operations. Users with minimum
programming experience in Microsoft VB or C++, can take advantage of the simplified graphical user
interface (GUI) of the Configurator to create their test application. Thus, they can focus on the structural
analysis rather than learning the detailed, low level MTS 793 system programming libraries to interface
with their MTS controller.

This software package consists of two parts:

1. The Computer Simulation Configurator (CSC) program with easy to use GUI allows the user to define
the MTS controller’s hardware resources that correspond to the control points, degrees of freedom, and
feedback vectors defined in the analysis software.

2. The Computer Simulation Interface (CSI) API which is the MTS 793 high level programming interface
in C++, VB, and COM. This API is a wrapper of the existing 793 system software APIs. After the user
creates the configuration using the Computer Simulation Configurator, they can load the configuration to
the test program and interface with the MTS controller using the high level API.”

Reference:

http://www.mts.com/en/civil/Seismic/index.asp (http://www.mts.com/en/civil/Seismic/index.asp) - This
website contains a link to a web-seminar on hybrid simulation.

Chapter 2 expControl Commands 23

SCRAMNet Experimental Control
This command is used to construct a SCRAMNet experimental control object. SCRAMNet (Shared
Common RAM Network) is a real-time communications network, based on a replicated, shared memory
concept. Each computer has a 2 MB memory module that is mirrored to all other computers in its
network. Data written locally to one computer is copied to the other computers in the network. Figure 4
shows how SCRAMNet is implemented at nees@berkeley.

expControl SCRAMNet $tag $memOffset $numActCh <-ctrlFilters (5 $filterTag)>
<-daqFilters (5 $filterTag)>

$tag unique control tag

$memOffset memory offset from SCRAMNet base memory address [bytes]

$numActCh number of actuator channels in the control system

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

expControl SCRAMNet 1 381020 8

The above example command uses a memory offset of 381020 bytes and 8 actuator channels.

Figure 4: SCRAMNet Experimental Control

Chapter 2 expControl Commands 24

The valid queries to a SCRAMNet experimental control when creating an ExpControlRecorder object
are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• control forces: ctrlForce, ctrlForces

• control time: ctrlTime, ctrlTimes

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

• daq forces: daqForce, daqForces

• daq time: daqTime, daqTimes

Reference:

http://nees.berkeley.edu/Facilities/network-computers.shtml
(http://nees.berkeley.edu/Facilities/network-computers.shtml)

Chapter 2 expControl Commands 25

SimDomain Experimental Control
This command is used to construct a Simulation Domain experimental control object. The SimDomain
command makes available in OpenFresco the entire OpenSees domain, which includes the material,
section and element libraries.

This makes it possible to simulate an actual experimental specimen using OpenSees. It can be used to
test the computational model, experimental setup, and network communication to ensure that all
non-experimental aspects of a hybrid simulation are functioning properly before conducting an actual
experiment. This command must be used in conjunction with the expControlPoint command.

expControl SimDomain $tag –trialCP $cpTag1 … –outCP $cpTag2 …
<-ctrlFilters (5 $filterTag)> <-daqFilters (5 $filterTag)>

$tag unique control tag

$cpTag tags of previously defined control points

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

Define materials

uniaxialMaterial Steel02 $matTag $Fy $E $b $R0 $cR1 $cR2 $a1 $a2 $a3 $a4
uniaxialMaterial Elastic 1 [expr 2.26*29000]
uniaxialMaterial Steel02 2 [expr 1.5*54] 146966.4 0.01 18.5 0.925 0.15 0.0 1.0 0.0 1.0

Define sections

section Aggregator $secTag $matTag1 $string1 $matTag2 $string2
section Aggregator 2 1 P 2 Mz

Define coordinate transformation

geomTransf Linear $transfTag
geomTransf Linear 1

Define element

element nonlinearBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag
element nonlinearBeamColumn 1 1 2 5 2 1

Define control points

expControlPoint tag nodeTag dir resp <-fact f> <-lim l u> ...
expControlPoint 1 2 ux disp uy disp rz disp
expControlPoint 2 2 ux disp ux force uy disp uy force rz disp rz force

Define experimental control

expControl SimDomain $tag -trialCP cpTags -outCP cpTags
expControl SimDomain 1 -trialCP 1 -outCP 2

Chapter 2 expControl Commands 26

The above example uses a trial control point of tag 1 and an output control point of tag 2. The trial
control point sends the displacements in the ux, uy, and rz directions for node 2 of the nonlinear beam
column element defined in OpenSees. Control point 2 measures the displacements and forces in the ux,
uy, and rz directions at the same node. For a detailed explanation of the expControlPoint command,
refer to Chapter 7 of this manual.

Figure 5: SimDomain Experimental Control

The valid queries to a SimDomain experimental control when creating an ExpControlRecorder object
are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• control forces: ctrlForce, ctrlForces

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

• daq forces: daqForce, daqForces

Reference:

http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html
(http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html)

Chapter 2 expControl Commands 27

SimFEAdapter Experimental Control
This command is used to construct a Simulation Finite-Element-Adapter experimental control object.
This controller is used to communicate with an adapter element of another finite element software over a
single persistent TCP/IP connection. It allows the user to couple two different finite element software
packages together to perform a single analysis.

expControl SimFEAdapter $tag ipAddr $ipPort <-ctrlFilters (5 $filterTag)>
<-daqFilters (5 $filterTag)>

$tag unique control tag

ipAddr IP address of slave process

$ipPort IP port of slave process

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

Define experimental control

expControl SimFEAdapter $tag ipAddr $ipPort
expControl SimFEAdapter 1 "127.0.0.1" 44000

The above example uses the SimFEAdapter experimental controller with an IP address of 127.0.0.1 and
port number of 44000.

Figure 6: SimFEAdapter Experimental Control

The valid queries to a SimFEAdapter experimental control when creating an ExpControlRecorder object
are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control forces: ctrlForce, ctrlForces

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq forces: daqForce, daqForces

Chapter 2 expControl Commands 28

Reference:

Schellenberg, A., Huang, Y., Mahin, S. A. (2008). “Structural FE-Software Coupling through the
Experimental Software Framework, OpenFresco.” Proceedings, 14th World Conference on Earthquake
Engineering. Beijing, China.

Chapter 2 expControl Commands 29

SimUniaxialMaterials Experimental Control

This command is used to construct a SimUniaxialMaterials experimental control object. It can be used to
simulate a specimen with 1 to n uncoupled degrees of freedom using 1 to n OpenSees uniaxial material
models. Since the material models simulate the forces that the 1 to n actuator load-cells would measure
for a given set of actuator displacements, the units of the specified material values are force and
displacement and not stress and strain.

expControl SimUniaxialMaterials $tag $matTag1 … <-ctrlFilters (5 $filterTag)>
<-daqFilters (5 $filterTag)>

$tag unique control tag

$matTag tags of previously defined uniaxial materials

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

EXAMPLE:

uniaxialMaterial Elastic 2 5.6
expControl SimUniaxialMaterials 1 2

The above example command uses an OpenSees uniaxial elastic material model with a tag of 2 and a
stiffness of 5.6. The OpenSees Command Language Manual contains a complete list of all available
uniaxial material models.

Figure 7: SimUniaxialMaterials Experimental Control

Chapter 2 expControl Commands 30

The valid queries to a SimUniaxialMaterials experimental control when creating an ExpControlRecorder
object are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq forces: daqForce, daqForces

Reference:

http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html
(http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html)

Chapter 2 expControl Commands 31

xPCtarget Experimental Control
This command is used to construct a xPCtarget experimental control object. In this real-time system,
the target PC is accessed from the host PC through an Ethernet connection. The xPC-Target
digital-signal-processor functions as a link between the host PC and the controllers. It runs a Simulink
predictor-corrector model in real-time.

expControl xPCtarget $tag $type ipAddr $ipPort appName appPath
<-ctrlFilters (5 $filterTag)> <-daqFilters (5 $filterTag)>

$tag unique control tag

$type Simulink predictor-corrector model type

 1 = using Displacement

 2 = using Displacement and Velocity

 3 = using Displacement, Velocity, and Acceleration

ipAddr IP address of xPC-Target

$ipPort IP port of xPC-Target

appName name of Simulink application to be loaded (without the .dlm
extension)

appPath path to Simulink application*

$filterTag id of previously defined filter tags; size of filter tag id is 5 (entries:
[disp, vel, accel, force, time])

*NOTE: Preferably, the appPath should be in quotes especially when there is a space in the path name,
and forward slashes should be used in the path name.

EXAMPLE:

expControl xPCtarget 1 1 “192.168.2.20” 22222 HybridControllerD3D3_1Act
"D:/PredictorCorrector/RTActualTestModels/cmAPI-xPCTarget-STS"

The above example command uses a Simulink model called HybridControllerD3D3_1Act which utilizes
displacements for prediction and correction. It communicates to an xPC-Target machine with an IP
address of “192.168.2.20” and a port of 22222. The path to the Simulink model is
"D:/PredictorCorrector/RTActualTestModels/cmAPI-xPCTarget-STS".

Chapter 2 expControl Commands 32

Figure 8: xPCtarget Experimental Control

The valid queries to a xPCtarget experimental control when creating an ExpControlRecorder object are:

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq forces: daqForce, daqForces

Reference:

http://nees.berkeley.edu/Facilities/network-computers.shtml
(http://nees.berkeley.edu/Facilities/network-computers.shtml)

Chapter 3 expElement Commands 33

These commands are used to construct the expElement objects. OpenFresco provides two ways of
defining an experimental element. The first, and more common, way is to define the experimental
element on the middle-tier server side and using a generic-client element in the finite element software
as shown in Figure 6a. This method is highlighted in YELLOW for all the expElement commands. A
second option is to define an experimental element directly in the finite element software and therefore
not using any element on the middle-tier server side, as shown in Figure 6b. Specifically, if OpenSees is
used as the finite element software, the commands highlighted in GRAY can be utilized. Other finite
element analysis software may be used with this option also. The recorder command can be used
with each element to capture the response quantities during simulation.

Figure 9: Generic client element (left) and experimental element (right) defined in FE-software

expElement Commands

C H A P T E R 3

Chapter 3 expElement Commands 34

In This Chapter

beamColumn (2D or 3D) Experimental Element .. 35
generic (1D, 2D, or 3D) Experimental Element .. 38
invertedVBrace (2D) Experimental Element ... 40
truss (1D, 2D, or 3D) Experimental Element .. 42
corotTruss (1D, 2D, or 3D) Experimental Element ... 44
twoNodeLink (1D, 2D, or 3D) Experimental Element ... 46

Chapter 3 expElement Commands 35

beamColumn (2D or 3D) Experimental Element

This command is used to construct a beamColumn experimental element object. Two nodes define this
element.

expElement beamColumn $tag $iNode $jNode $transTag –site $siteTag
–initStif $Kij … <–iMod> <–rho $rho>

expElement beamColumn $tag $iNode $jNode $transTag –server $ipPort <ipAddr>
<–ssl> <–dataSize $size> –initStif Kij … <–iMod> <–rho $rho>

$tag unique element tag

$iNode,$jNode end node tags

$transTag tag of previously defined coordinate transformation object

$siteTag tag of previously defined site object

$Kij initial stiffness matrix components (row-wise) of the element

-iMod error correction using Nakashima’s initial stiffness modification

(optional, default = false)

$rho mass per unit length (optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

set mass 0.12
node $tag $xCrd $yCrd $mass
node 1 0.0 0.00
node 2 108.0 -54.00
node 3 216.0 -42.00
node 4 324.0 0.00
node 5 0.0 0.00 -mass $mass $mass 116.6
node 6 108.0 0.00 -mass $mass $mass 116.6
node 7 216.0 0.00 -mass $mass $mass 116.6
node 8 324.0 0.00 -mass $mass $mass 116.6
node 9 108.0 0.00 -mass $mass $mass 116.6
node 10 216.0 0.00 -mass $mass $mass 116.6

Define experimental site

expSite RemoteSite $tag <-setup $setupTag> $ipAddr $ipPort <$dataSize>
expSite RemoteSite 1 "127.0.0.1" 8090
expSite RemoteSite 2 "127.0.0.1" 8091
Define geometric transformation

Chapter 3 expElement Commands 36

geomTransf type $tag
geomTransf Linear 1
geomTransf Corotational 2

Define experimental elements

expElement beamColumn 2 2 9 1 -site 1 -initStif 1213 0 0 0 11.2 -302.4 0 -302.4 10886.4

Nodes 2 and 9 connect the above 2D beamColumn experimental element. A linear coordinate
transformation is used. The element is defined with a remote experimental site with “127.0.0.1” as the IP
address and 8090 as the port number. The initial stiffness matrix of this element is Ki.

Ki =

1213 0 0

0 11.2 302.4

0 302.4 10886.4

Figure 10: beamColumn Experimental Element

The valid queries to a beamColumn experimental element when creating an ElementRecorder (see
OpenSees Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces: localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

Chapter 3 expElement Commands 37

Reference for initial stiffness modification:

Nakashima, M. and Kato, H. (1987). “Experimental error growth behavior and error growth controlling
on-line computer test control method,” Building Research Institute, BRI-Report No. 123, Ministry of
Construction, Tsukuba, Japan,

Chapter 3 expElement Commands 38

generic (1D, 2D, or 3D) Experimental Element
This command is used to construct a generic experimental element object. This element is defined by
any number of nodes and the degrees of freedom at these nodes.

expElement generic $tag –node $Ndi … –dof $dofNdi … –dof $dofNdj …
–site $siteTag –initStif Kij … <–iMod> <–mass Mij …>

expElement generic $tag –node $Ndi … –dof $dofNdi … –dof $dofNdj …
–server $ipPort <ipAddr> <–ssl> <–dataSize $size> –initStif Kij …
<–iMod> <–mass Mij …>

$tag unique element tag

$Ndi n end node tags (n = number of nodes)

$dofNdi, $dofNdj degrees of freedom for n end nodes

$siteTag tag of previously defined site object

$Kij initial stiffness matrix components (row-wise) of the element

-iMod error correction using Nakashima’s initial stiffness modification

(optional, default = false)

$Mij mass matrix components (row-wise) of element
(optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

set mass3 0.04
set mass4 0.02
node $tag $xCrd $yCrd $mass
node 1 0.0 0.00
node 2 100.0 0.00
node 3 0.0 54.00 -mass $mass3 $mass3
node 4 100.0 54.00 -mass $mass4 $mass4

Define experimental site

expSite LocalSite $tag $setupTag
expSite LocalSite 2 2

Chapter 3 expElement Commands 39

Define experimental elements

expElement generic 1 -node 1 3 -dof 1 2 -dof 1 2 -site 2
-initStif 130 150 110 100 150 200 220 180 100 110 180 150 125 100 100 125 200

Nodes 1 and 3 connect the above 2D generic experimental element. Translational degrees of freedom 1
and 2 are used for each node. The element is defined using a local experimental site. The initial stiffness
matrix of this element is Ki.

Ki =

130 150 110 100

150 220 180 100

110 180 150 125

100 100 125 200

Figure 11: Arbitrary generic Experimental Element

The valid queries to a generic experimental element when creating an ElementRecorder (see OpenSees
Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces (= global): localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

Chapter 3 expElement Commands 40

invertedVBrace (2D) Experimental Element

This command is used to construct an invertedVBrace experimental element object. Three nodes define
this element.

expElement invertedVBrace $tag $iNode $jNode $kNode –site $siteTag
–initStif Kij … <–iMod> <–nlGeom> <–rho1 rho1> <–rho2 rho2>

expElement invertedVBrace $tag $iNode $jNode $kNode –server $ipPort <ipAddr>
<–ssl> <–dataSize $size> –initStif Kij … <–nlGeom> <–rho1 rho1>
<–rho2 rho2>

$tag unique element tag

$iNode, $jNode,

$kNode

end node tags according to the configuration in Figure 7

$siteTag tag of already defined site object

$Kij initial stiffness matrix components (row-wise) of the element

-iMod error correction using Nakashima’s initial stiffness modification
(optional, default = false)

-nlGeom nonlinear geometry (optional, default = false)

$rho1, $rho2 mass per unit length of brace legs (optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

set mass3 0.04
node $tag $xCrd $yCrd $mass
node 1 0.0 0.00
node 2 100.0 0.00
node 3 50.0 54.00 -mass $mass3 $mass3

Define experimental site

expSite LocalSite $tag $setupTag
expSite LocalSite 1 1

Define experimental elements

expElement invertedVBrace 1 1 2 3 -site 1 -initStif 250 0 0 0 434 0 0 0

Chapter 3 expElement Commands 41

Nodes 1,2, and 3 connect the above invertedVBrace experimental element. Note the ordering of the
nodes in Figure 5. The element is defined using a local experimental site. The initial stiffness of this
element is Ki.

Ki =

250 0 0

0 434 0

0 0 0

 (if rotational DOF is ignored)

Figure 12: invertedVBrace Experimental Element

The valid queries to a invertedVBrace experimental element when creating an ElementRecorder (see
OpenSees Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces (= global): localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

Chapter 3 expElement Commands 42

truss (1D, 2D, or 3D) Experimental Element

This command is used to construct a truss experimental element object. Two nodes define this element.

expElement truss $tag $iNode $jNode –site $siteTag –initStif $K <–iMod> <–rho
$rho>

expElement truss $tag $iNode $jNode –server $ipPort <ipAddr> <–ssl>
<–dataSize $size> –initStif $K <–iMod> <–rho $rho>

$tag unique element tag

$iNode,$jNode end node tags

$siteTag tag of previously defined site object

$K initial stiffness of the element

-iMod error correction using Nakashima’s initial stiffness modification
(optional, default = false)

$rho mass per unit length (optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

node $tag $xCrd $yCrd $mass
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0

Define experimental site

expSite LocalSite $tag $setupTag
expSite LocalSite 2 2

Define experimental elements

expElement truss 1 3 4 –site 2 -initStif [expr 3000.0*5.0/135.76]

Nodes 3 and 4 connect the above 2D truss experimental element. The element is defined using a local
experimental site. The initial stiffness of this element is [expr 3000.0*5.0/135.76] = 110.5.

Ki = 110.5[]

Chapter 3 expElement Commands 43

Figure 13: truss Experimental Element

The valid queries to a truss experimental element when creating an ElementRecorder (see OpenSees
Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces: localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

Chapter 3 expElement Commands 44

corotTruss (1D, 2D, or 3D) Experimental
Element

This command is used to construct a corotational truss experimental element object. A corotational
formulation adopts a set of corotational axes, which rotate with the element, thus taking into account an
exact geometric transformation between local and global frames of reference. Two nodes define this
element.

expElement corotTruss $tag $iNode $jNode –site $siteTag –initStif $K <–iMod> <–rho
$rho>

expElement corotTruss $tag $iNode $jNode –server $ipPort <ipAddr> <–ssl>
<–dataSize $size> –initStif $K <–iMod> <–rho $rho>

$tag unique element tag

$iNode,$jNode end node tags

$siteTag tag of previously defined site object

$K initial stiffness of the element

-iMod error correction using Nakashima’s initial stiffness modification
(optional, default = false)

$rho mass per unit length (optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

node $tag $xCrd $yCrd $mass
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0

Define experimental site

expSite LocalSite $tag $setupTag
expSite LocalSite 2 2

Define experimental elements

expElement corotTruss 1 3 4 –site 2 -initStif [expr 3000.0*5.0/135.76]

Chapter 3 expElement Commands 45

Nodes 3 and 4 connect the above 2D corotational truss experimental element. The element is defined
using a local experimental site. The initial stiffness of this element is [expr 3000.0*5.0/135.76] = 110.5.

Ki = 110.5[]

Figure 14: corotTruss Experimental Element

The valid queries to a corotational truss experimental element when creating an ElementRecorder (see
OpenSees Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces: localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

Chapter 3 expElement Commands 46

twoNodeLink (1D, 2D, or 3D) Experimental
Element
This command is used to construct a twoNodeLink experimental element object. Two nodes define this
element, which do not need to be at the same location. This element can have 1 to 6 degrees of
freedom, where only the transverse and rotational degrees of freedom are coupled as long as the
element does not have zero length. In addition, if the element length is larger than zero, the user can
optionally specify how the P-Delta moments around the local x- and y-axis are distributed among a
moment at node i, a moment at node j and a shear couple. The sum of these three ratios is always equal
to 1. It is important to recognize that if this element has zero length, it does not consider the geometry as
given by the nodal coordinates, but utilizes the local orientation vectors to determine the directions of the
springs.

expElement twoNodeLink $tag $iNode $jNode –dir $dirs –site $siteTag
–initStif $Kij … <–orient <$x1 $x2 $x3> $y1 $y2 $y3> <-pDelta (4 $Mratio)>
<–iMod> <–mass $m>

expElement twoNodeLink $tag $iNode $jNode –dir $dirs –server $ipPort <ipAddr>
<–ssl> <–dataSize $size> –initStif $Kij … <–orient <$x1 $x2 $x3> $y1 $y2
$y3> <-pDelta (4 $Mratio)> <–iMod> <–mass $m>

$tag unique element tag

$iNode,$jNode end node tags

$dir force directions (1, 1-3 or 1-6)

$siteTag tag of previously defined site object

$Kij initial stiffness matrix components (row-wise) of element

$x1, $x2, $x3,

$y1, $y2, $y3

orientation vectors for the element. x1, x2, and x3 are vector
components in the global coordinates defining the local x-axis.
y1, y2, and y3 are the same except that it defines the y vector
which lies in the local x-y plane for the element. (optional, default
= global X and Y)

$Mratio P-Delta moment contribution ratio, size of ratio vector is 4
(entries: [My-$iNode, My-$jNode, Mz-$iNode, Mz-$jNode])
My-$iNode + My-$jNode <= 1.0, Mz-$iNode + Mz-$jNode <= 1.0.
Remaining P-Delta moments are resisted by shear couples.
(optional, default = [0.0 0.0 0.0 0.0])

-iMod error correction using Nakashima’s initial stiffness modification
(optional, default = false)

$m mass (optional, default = 0.0)

$ipPort IP port of middle-tier server

ipAddr IP address of middle-tier server (optional)

Chapter 3 expElement Commands 47

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define geometry for model

set mass3 0.04
set mass4 0.02
node $tag $xCrd $yCrd $mass
node 1 0.0 0.00
node 2 100.0 0.00
node 3 0.0 54.00 -mass $mass3 $mass3
node 4 100.0 54.00 -mass $mass4 $mass4

Define experimental site

expSite LocalSite $tag $setupTag
expSite RemoteSite 1 "169.229.203.152" 8090

Define experimental elements

expElement twoNodeLink 1 1 3 -dir 2 -site 1 -initStif 2.8 -orient 0 1 0 -1 0
0

Nodes 1 and 3 connect the above 2D twoNodeLink experimental element. The element is defined using
a remote experimental site with an IP address of “169.229.203.152” and a port number of 8090. The
initial stiffness of this element is 2.8. The orientation is set such that the element x-axis points in the
global Y-axis direction and the element y-axis points in the negative X-direction in the global coordinate
system.

Ki = 2.8[]

ub,1 = u4 u1
ub,2 = u5 u2

0.5L u3 + u6()

ub,3 = u6 u3

Figure 15: twoNodeLink Experimental Element

Chapter 3 expElement Commands 48

The valid queries to a twoNodeLink experimental element when creating an ElementRecorder (see
OpenSees Manual) object are:

• global forces: force, forces, globalForce, globalForces

• local forces: localForce, localForces

• basic forces: basicForce, basicForces,
 daqForce, daqForces

• control displacements: defo, deformation, deformations,
 basicDefo, basicDeformation, basicDeformations,
 ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

• basic defo and forces: defoANDforce, deformationANDforce,
 deformationsANDforces

Chapter 4 expSetup Commands 49

These commands are used to construct the expSetup objects. The expSetup objects transform between
the basic experimental element degrees of freedom in OpenFresco and the actuator degrees of freedom
in the laboratory. Linear and non-linear transformations are available. The expSetup objects can be
defined using the expControl objects.

In This Chapter

Aggregator Experimental Setup.. 50
FourActuators Experimental Setup... 51
InvertedVBrace Experimental Setup... 53
InvertedVBraceJntOff Experimental Setup ... 55
NoTransformation Experimental Setup... 57
OneActuator Experimental Setup ... 60
ThreeActuators Experimental Setup... 62
ThreeActuatorsJntOff Experimental Setup ... 64
TwoActuators Experimental Setup ... 66

C H A P T E R 4

expSetup Commands

Chapter 4 expSetup Commands 50

Aggregator Experimental Setup

This command is used to construct an Aggregator experimental setup object. The Aggregator
experimental setup object combines different experimental setups into one setup.

expSetup Aggregator $tag <–control $ctrlTag> –setup $setupTagi … <–trialDispFact
$f> <–trialVelFact $f> <–trialAccelFact $f> <–trialForceFact $f>
<–trialTimeFact $f> <–outDispFact $f> <–outVelFact $f> <–outAccelFact $f>
<–outForceFact $f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$setupTag tags of previously defined setup objects

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental setup

expSetup OneActuator 1 2
expSetup TwoActuators 2 120 120 60

expSetup Aggregator 3 -control 1 -setup 1 2

The above Aggregator experimental setup command combines the previously defined OneActuator
setup and TwoActuators setup. In the “-setup” field, the OneActuator setup is listed first and the
TwoActuators setup is listed second.

More detailed information about the OneActuator and TwoActuators setups is provided later in this
section.

Chapter 4 expSetup Commands 51

FourActuators Experimental Setup
This command is used to construct a FourActuators experimental setup object. This experimental setup
consists of four actuators. The actuators control the two translational and two rotational degrees of
freedom of a specimen in 3D. The axial and the torsional DOFs are ignored.

expSetup FourActuators $tag <–control $ctrlTag> $L1 $L2 $L3 $L4 $a1 $a2 $a3 $a4
$h $h1 $h2 $arlN $arlS $LrodN $LrodS $Hbeam <–nlGeom> <–phiLocX
$phi> <–trialDispFact $f> <–trialVelFact $f> <–trialAccelFact $f>
<–trialForceFact $f> <–trialTimeFact $f> <–outDispFact $f> <–outVelFact $f>
<–outAccelFact $f> <–outForceFact $f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$L1 length of actuator 1

$L2 length of actuator 2

$L3 length of actuator 3

$L4 length of actuator 4

$a1 length of rigid link 1

$a2 length of rigid link 2

$a3 length of rigid link 3

$a4 length of rigid link 4

$h height of rigid link between actuators

$h1 height of rigid link between lower actuator and pin connection

$h2 height of rigid link between lower actuator and lower beam
flange

$arlN length of rigid link from top pin to lower beam flange at NORTH
rod

$arlS length of rigid link from top pin to lower beam flange at SOUTH
rod

$LrodN pin to pin length of the north side rod

$LrodS pin to pin length of the south side rod

$Hbeam height of spreader beam

-nlGeom nonlinear geometry (optional, default = false)

$phi angle of actuator 1 with respect to the reaction wall [degree]
(optional, default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

Chapter 4 expSetup Commands 52

EXAMPLE:

Define experimental control

expControl xPCtarget 1 1 “192.168.2.20” 22222 HybridControllerD3D3_1Act
"D:/PredictorCorrector/RTActualTestModels/cmAPI-xPCTarget-STS"

Define experimental setup

expSetup FourActuators 1 -control 1 60 60 60 60 72 72 72 72 48 24 24 36 36
12 12 60

The above FourActuators experimental setup command uses the previously defined xPCtarget
experimental control object. The lengths of Actuators 1, 2, 3, and 4 are 60. The lengths of rigid links 1, 2,
3, and 4 are 72. The length of the rigid link between actuators is 48. The heights of rigid links between
the lower actuator and the pin connection and between the lower actuator and the lower beam flange
are 24. The lengths of the rigid links between the top pin and the lower beam flange at the NORTH and
SOUTH rods are 36. The pin-to-pin lengths of the north side and south side rods are 12. The height of
the spreader beam is 60.

Figure 16: Displacement Transformation in FourActuators Experimental Setup

Figure 17: Force Transformation in FourActuators Experimental Setup

Chapter 4 expSetup Commands 53

InvertedVBrace Experimental Setup
This command is used to construct an InvertedVBrace experimental setup object. This experimental
setup consists of three actuators, which control the specimen deformation and two load cells that
measure the six support reactions or resisting forces.

expSetup InvertedVBrace $tag <–control $ctrlTag> $La1 $La2 $La3 $L1 $L2
<–nlGeom> <–posAct1 pos> <–phiLocX $phi> <–trialDispFact $f>
<–trialVelFact $f> <–trialAccelFact $f> <–trialForceFact $f> <–trialTimeFact
$f> <–outDispFact $f> <–outVelFact $f> <–outAccelFact $f> <–outForceFact
$f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$La1 length of actuator 1

$La2 length of actuator 2

$La3 length of actuator 3

$L1 length of rigid link 1

$L2 length of rigid link 2

-nlGeom nonlinear geometry (optional, default = false)

pos position of actuator 1, left or right (l or r) (optional, default = left)

$phi angle from rigid loading beam to local x-axis [degree] (optional,
default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1 2 3

Define experimental setup

expSetup InvertedVBrace 1 -control 1 60 72 72 60 60 -posAct1 left

The above InvertedVBrace experimental setup command uses the previously defined
SimUniaxialMaterials experimental control object. The lengths of Actuators 1, 2, and 3 are 60, 72, and
72, respectively. The total length of the rigid loading beam is 120 (L1 = 60 and L2 = 60). Actuator 1 is
located on the left side of the beam. The local 1-axis is rotated 0 degree (counterclockwise) from the
rigid loading beam.

Chapter 4 expSetup Commands 54

Figure 18: InvertedVBrace Experimental Setup

Figure 19: Transformation in InvertedVBrace Experimental Setup

Chapter 4 expSetup Commands 55

InvertedVBraceJntOff Experimental Setup
This command is used to construct an InvertedVBraceJntOff experimental setup object. This
experimental setup consists of three actuators, which control the specimen deformation and two load
cells that measure the six support reactions or resisting forces. It accounts for the rigid joint offsets
between the actuators.

expSetup InvertedVBraceJntOff $tag <–control $ctrlTag> $La1 $La2 $La3 $L1 $L2
$L3 $L4 $L5 $L6 <–nlGeom> <–posAct1 $pos> <–phiLocX $phi>
<–trialDispFact $f> <–trialVelFact $f> <–trialAccelFact $f> <–trialForceFact
$f> <–trialTimeFact $f> <–outDispFact $f> <–outVelFact $f> <–outAccelFact
$f> <–outForceFact $f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$La1 length of actuator 1

$La2 length of actuator 2

$La3 length of actuator 3

$L1 length of rigid link 1

$L2 length of rigid link 2

$L3 length of rigid link 3

$L4 length of rigid link 4

$L5 length of rigid link 5

$L6 length of rigid link 6

-nlGeom nonlinear geometry (optional, default = false)

$pos position of actuator 1, left or right (l or r) (optional, default = left)

$phi angle from rigid loading beam to local x-axis [degree] (optional,
default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1 2 3

Define experimental setup

expSetup InvertedVBraceJntOff 1 -control 1 60 72 72 24 60 60 24 12 12
-posAct1 left

Chapter 4 expSetup Commands 56

The above InvertedVBraceJntOff experimental setup command uses the previously defined
SimUniaxialMaterials experimental control object. The lengths of Actuators 1, 2, and 3 are 60, 72, and
72, respectively. The total length of the rigid loading beam is 120 (L2 = 60 and L3 = 60). The lengths of
the offsets L1, L4, L5, and L6 are 24, 24, 12, and 12, respectively. Actuator 1 is located on the left side of
the beam. The local 1-axis is rotated 0 degree (counterclockwise) from the rigid loading beam.

Figure 20: InvertedVBraceJntOff Experimental Setup

Figure 21: Transformation in InvertedVBraceJntOff Experimental Setup

Chapter 4 expSetup Commands 57

NoTransformation Experimental Setup
This command is used to construct a NoTransformation experimental setup object. This experimental
setup consists of up to six actuators, which are set to control any of the basic degrees of freedom of a
specimen.

expSetup NoTransformation $tag <–control $ctrlTag> –dir $dirs … –sizeTrialOut
$sizeTrial $sizeOut <–trialDispFact $f> <–trialVelFact $f> <–trialAccelFact
$f> <–trialForceFact $f> <–trialTimeFact $f> <–outDispFact $f> <–outVelFact
$f> <–outAccelFact $f> <–outForceFact $f> <–outTimeFact $f>

$tag unique element tag

$ctrlTag tag of previously defined control object (optional)

$dirs directions (1-6)

$sizeTrial size of the trial vector received from the element

$sizeOut size of the output vector returned to the element

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

2D EXAMPLES:

Element Degrees

of Freedom

Experimental

Setup 1

Experimental

Setup 2

Experimental

Setup 3

Define experimental control

expControl SimUniaxialMaterials 1 1
expControl SimUniaxialMaterials 2 1 2 3

Define experimental setup

Experimental Setup 1
expSetup NoTransformation 1 -control 1 -dir 1 -sizeTrialOut 3 3

Chapter 4 expSetup Commands 58

Experimental Setup 2
expSetup NoTransformation 2 -control 1 -dir 2 -sizeTrialOut 3 3 -trialDispFact -1
-outDispFact -1 -outForceFact -1

Experimental Setup 3
expSetup NoTransformation 3 -control 2 -dir 2 1 3 -sizeTrialOut 3 3 -trialDispFact -1
1 1 -outDispFact -1 1 1 -outForceFact -1 1 1

Three examples are provided to show how to define the -dir input. All the examples use the previously
defined SimUniaxialMaterials experimental control objects. In the example Experimental Setup 1, the
control system degree of freedom 1 points in the same direction as the element degree of freedom 1. In
the example Experimental Setup 2, the control system degree of freedom 1 points in the negative
direction of element degree of freedom 2. Therefore, the trial displacement, output displacement, and
output force are factored by -1. In example 3, the control system degrees of freedom 1, 2, and 3 point in
the direction of the element degrees of freedom 2, 1, and 3, respectively. The response quantities for the
degree of freedom 1 are factored by -1 since it points in the negative direction of the element degree of
freedom 2.

3D EXAMPLES:

Element Degrees

of Freedom

Experimental

Setup 1

Experimental

Setup 1

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1
expControl SimUniaxialMaterials 2 1 2 3 4 5 6

Define experimental setup

Experimental Setup 1
expSetup NoTransformation 1 -control 1 -dir 4 -sizeTrialOut 6 6

Experimental Setup 2
expSetup NoTransformation 2 -control 2 -dir 2 4 1 5 3 6 -sizeTrialOut 6 6

The -dir inputs for 3D examples work in the same manner as the 2D examples. Refer to the 2D
examples for more information.

Chapter 4 expSetup Commands 59

Figure 22: NoTransformation Experimental Setup

Chapter 4 expSetup Commands 60

OneActuator Experimental Setup
This command is used to construct a OneActuator experimental setup object. This experimental setup
consists of only one actuator, which is set in direction to the specimen.

expSetup OneActuator $tag <–control $ctrlTag> $dir –sizeTrialOut $sizeTrial
$sizeOut <–trialDispFact $f> <–trialVelFact $f> <–trialAccelFact $f>
<–trialForceFact $f> <–trialTimeFact $f> <–outDispFact $f> <–outVelFact $f>
<–outAccelFact $f> <–outForceFact $f> <–outTimeFact $f>

$tag unique element tag

$ctrlTag tag of previously defined control object (optional)

$dir direction of the imposed quantity in the element basic reference
coordinate system (1-6)

$sizeTrial size of the trial vector received from the element

$sizeOut size of the output vector returned to the element

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SCRAMNet 1 381020 8

Define experimental setup

expSetup OneActuator 1 –control 1 2 -sizeTrialOut 3 3 -trialDispFact 0.5 -outDispFact
2.0 -outForceFact 2.0

The above OneActuator experimental setup uses the previously defined SCRAMNet experimental
control object. The imposed quantity is in the 2-direction as shown in Figure 14. The size of the trial
vector and the output vector are set to 3. A factor of 0.5 is applied to the trial displacement. A factor of
2.0 is applied to the output displacement and force.

Chapter 4 expSetup Commands 61

Figure 23: OneActuator Experimental Setup

Figure 24: Transformation in OneActuator Experimental Setup

Chapter 4 expSetup Commands 62

ThreeActuators Experimental Setup
This command is used to construct a ThreeActuators experimental setup object. This experimental
setup consists of three actuators. The actuators control the two translational and the rotational degrees
of freedom of a specimen.

expSetup ThreeActuators $tag <–control $ctrlTag> $La1 $La2 $La3 $L1 $L2
<–nlGeom> <–posAct1 $pos> <–phiLocX $phi> <–trialDispFact $f>
<–trialVelFact $f> <–trialAccelFact $f> <–trialForceFact $f> <–trialTimeFact
$f> <–outDispFact $f> <–outVelFact $f> <–outAccelFact $f> <–outForceFact
$f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$La1 length of actuator 1

$La2 length of actuator 2

$La3 length of actuator 3

$L1 length of rigid link 1

$L2 length of rigid link 2

-nlGeom nonlinear geometry (optional, default = false)

$pos position of actuator 1, left or right (l or r) (optional, default = left)

$phi angle from rigid loading beam to local x-axis [degree] (optional,
default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1 2 3

Define experimental setup

expSetup ThreeActuators 1 -control 1 60 72 72 60 60 -philLocX 90

The above ThreeActuators experimental setup command uses the previously defined
SimUniaxialMaterials experimental control object. The lengths of Actuators 1, 2, and 3 are 60, 72, and
72, respectively. The total length of the rigid loading beam is 120 (L1 = 60 and L2 = 60). Actuator 1 is
located on the left side of the beam. The local 1-axis is rotated 90 degrees (counterclockwise) from the
rigid loading beam.

Chapter 4 expSetup Commands 63

Figure 25: ThreeActuators Experimental Setup

Figure 26: Transformation in ThreeActuators Experimental Setup

Chapter 4 expSetup Commands 64

ThreeActuatorsJntOff Experimental Setup
This command is used to construct a ThreeActuatorsJntOff experimental setup object. This
experimental setup consists of three actuators, which control the two translational and the rotational
degrees of freedom of a specimen. It accounts for the rigid joint offsets between the actuators.

expSetup ThreeActuatorsJntOff $tag <–control $ctrlTag> $La1 $La2 $La3 $L1 $L2
$L3 $L4 $L5 $L6 <–nlGeom> <–posAct1 $pos> <–phiLocX $phi>
<–trialDispFact $f> <–trialVelFact $f> <–trialAccelFact $f> <–trialForceFact
$f> <–trialTimeFact $f> <–outDispFact $f> <–outVelFact $f> <–outAccelFact
$f> <–outForceFact $f> <–outTimeFact $f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$La1 length of actuator 1

$La2 length of actuator 2

$La3 length of actuator 3

$L1 length of rigid link 1

$L2 length of rigid link 2

$L3 length of rigid link 3

$L4 length of rigid link 4

$L5 length of rigid link 5

$L6 length of rigid link 6

-nlGeom nonlinear geometry (optional, default = false)

$pos position of actuator 1, left or right (l or r) (optional, default = left)

$phi angle from rigid loading beam to local x-axis [degree] (optional,
default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1 2 3

Define experimental setup

expSetup ThreeActuatorsJntOff 1 -control 1 60 72 72 24 60 60 24 12 12
-philLocX 90

Chapter 4 expSetup Commands 65

The above ThreeActuatorJntOff experimental setup command uses the previously defined
SimUniaxialMaterials experimental control object. The lengths of Actuators 1, 2, and 3 are 60, 72, and
72, respectively. The total length of the rigid loading beam is 120 (L2 = 60 and L3 = 60). The lengths of
the offsets L1, L4, L5, and L6 are 24, 24, 12, and 12, respectively. Actuator 1 is located on the left side of
the beam. The local 1-axis is rotated 90 degrees (counterclockwise) from the rigid loading beam.

Figure 27: ThreeActuatorsJntOff Experimental Setup

Figure 28: Transformation in ThreeActuatorsJntOff Experimental Setup

Chapter 4 expSetup Commands 66

TwoActuators Experimental Setup
This command is used to construct a TwoActuators experimental setup object. This experimental setup
consists of two actuators, which control the translational and the rotational degrees of freedom of a
specimen.

expSetup TwoActuators $tag <–control $ctrlTag> $La1 $La2 $L <–nlGeom> <–posAct
$pos> <–phiLocX $phi> <–trialDispFact $f> <–trialVelFact $f>
<–trialAccelFact $f> <–trialForceFact $f> <–trialTimeFact $f> <–outDispFact
$f> <–outVelFact $f> <–outAccelFact $f> <–outForceFact $f> <–outTimeFact
$f>

$tag unique setup tag

$ctrlTag tag of previously defined control object (optional)

$La1 length of actuator 1

$La2 length of actuator 2

L length of rigid link

-nlGeom nonlinear geometry (optional, default = false)

$pos position of actuators, left or right (l or r) (optional, default = left)

$phi angle from horizontal line formed by actuator 1 to local x-axis
[degree] (optional, default = 0.0)

$f factors applied to trial (<-ctrl….Fact $f>) and acquired (
<-out….Fact $f>) data before transformation (optional, default =
1.0)

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1 2

Define experimental setup

expSetup TwoActuators 1 -control 1 72 72 60 -philLocX 90

The above TwoActuators experimental setup command uses the previously defined
SimUniaxialMaterials experimental control object. The lengths of Actuators 1 and 2 are 72 and 72,
respectively. The total length of the rigid loading beam is 60. Actuators are located on the left side of the
beam. The local 1-axis is rotated 90 degrees (counterclockwise) from Actuator 1.

Chapter 4 expSetup Commands 67

Figure 29: TwoActuators Experimental Setup

Figure 30: Transformation in TwoActuators Experimental Setup

Chapter 5 expSignalFilter Commands 68

These commands are used to construct the expSignalFilter objects. These objects are used to filter or
modify the signals that are both being sent and received from the control system.

In This Chapter

ErrorSimRandomGauss Experimental Signal Filter.. 69
ErrorSimUndershoot Experimental Signal Filter ... 70

expSignalFilter Commands

C H A P T E R 5

Chapter 5 expSignalFilter Commands 69

ErrorSimRandomGauss Experimental Signal
Filter
This command is used to construct an Error Simulation Random Gauss experimental signal filter object.
The Gaussian white noise is generated using the Box-Muller method. The uniform deviates are
generated by the special function based on NR::ran3 in Numerical Recipes in C++, 2nd Ed.

expSignalFilter ErrorSimRandomGauss $tag $avg $std

$tag unique experimental signal filter tag

$avg average of error

$std standard deviation of error

The signal at the output port of the filter is calculated as follows:

signal = signal + error(avg, std)

EXAMPLE:

Define experimental signal filter

expSignalFilter ErrorSimRandomGauss 1 0.0 0.015

This example uses an average of 0.0 and a standard deviation of 0.015.

Reference:

Press, William H., et al., “Numerical Recipes in C++: The Art of Scientific Computing”, 2nd ed.,
Cambridge University Press, 2002.

Chapter 5 expSignalFilter Commands 70

ErrorSimUndershoot Experimental Signal Filter

This command is used to construct an Error Simulation Undershoot experimental signal filter object.

expSignalFilter ErrorSimUndershoot $tag $error

$tag unique experimental signal filter tag

$error undershoot error

The signal at the output port of the filter is calculated as follows:

if (signali+1 > signali)

 signali+1 = signali+1 - error

elseif (signali+1 < signali)

 signali+1 = signali+1 + error

else

 signali+1 = signali+1

EXAMPLE:

Define experimental signal filter

expSignalFilter ErrorSimUndershoot 1 0.167

This example uses an error of 0.167.

Chapter 6 expSite Commands 71

These commands are used to construct the expSite objects. The expSite objects provide
communication methods for distributed testing. They utilize communication channels with TCP/IP,
NHCP, or UDP communication protocols. In addition they optionally use OpenSSL for secure
communication in the case of distributed testing.

In This Chapter

Actor Experimental Site .. 72
Local Experimental Site .. 73
Shadow (or Remote) Experimental Site ... 74

expSite Commands

C H A P T E R 6

Chapter 6 expSite Commands 72

Actor Experimental Site

This command is used to construct an ActorSite experimental site object. An actor experimental site
communicates with a remote experimental site and runs on the server program. This object can be
defined with either an already defined experimental setup or an experimental control.

To use with already defined experimental setup (in other words, the setup is on the server side):

expSite ActorSite $tag –setup $setupTag $ipPort <–ssl>

To use with already defined experimental control (in other words, the setup is on the client side):

expSite ActorSite $tag –control $ctrlTag $ipPort <–ssl>

$tag unique experimental site tag

$setupTag tag of the previously defined setup object if the setup is on the
server side

$ipPort IP port number of the ActorSite

-ssl secure transactions using OpenSSL (optional)

$ctrlTag tag of the previously defined control object if the setup is on the
client side

EXAMPLE:

Define experimental setup

expSetup OneActuator $tag <-control $ctrlTag> $dir <-trialDispFact $f> ...
expSetup OneActuator 1 -control 2 1

Define experimental site

expSite ActorSite 1 -setup 1 8090

This example uses a previously defined OneActuator experimental setup and an IP port of 8090. The
experimental setup is defined on the server side.

Chapter 6 expSite Commands 73

Local Experimental Site

This command is used to construct a LocalSite experimental site object. It is used to run a local test
where no client-server communication is necessary.

expSite LocalSite $tag $setupTag

$tag unique experimental site tag

$setupTag tag of the previously defined setup object

EXAMPLE:

Define experimental setup

expSetup OneActuator $tag <-control $ctrlTag> $dir <-trialDispFact $f> ...
expSetup OneActuator 2 -control 2 1

Define experimental site

expSite LocalSite 2 2

This example uses a previously defined OneActuator experimental setup to run a local test.

Chapter 6 expSite Commands 74

Shadow (or Remote) Experimental Site
This command is used to construct a ShadowSite (or RemoteSite) experimental site object. A shadow
(or remote) experimental site communicates with an actor experimental site and runs on the client
program.

For Shadow Site:

expSite ShadowSite $tag <–setup $setupTag> ipAddr $ipPort <–dataSize $size>

For Remote Site (this is obsolete and will be removed in future versions):

expSite RemoteSite $tag <–setup $setupTag> ipAddr $ipPort <–dataSize $size>

$tag unique experimental site tag

$setupTag tag of the previously defined setup object (optional, needs to be
provided if setup is on client side)

ipAddr IP address of the corresponding ActorSite

$ipPort IP port number of the corresponding ActorSite

-ssl secure transactions using OpenSSL (optional)

$size data size being sent (optional)

EXAMPLE:

Define experimental site

expSite ShadowSite 1 "169.229.203.152" 8090

This example uses an IP address of 169.229.203.152 and port number of 8090.

Chapter 7 expControlPoint Command 75

This command is used to construct the expControlPoint object. The expControlPoint command is used
when a test is conducted using control points. For example, control points are required when using the
LabVIEW experimental control command. Since the MTS MiniMost, which is controlled by LabVIEW,
cannot set safety limits, the expControlPoint command is used to set such limits.

expControlPoint $tag $nodeTag dir resp <–fact $f> <–lim $l $u> …

$tag unique control point tag

$nodeTag unique node tag

dir direction of response quantity; input parameters are:

 ux = X-axis direction

 uy = Y-axis direction

 uz = Z-axis direction

 rx = rotation in the X-axis direction

 ry = rotation in the Y-axis direction

 rz = rotation in the Z-axis direction

resp response quantity; input parameters are:

 disp = displacement

 vel = velocity

 accel = acceleration

 force = force

 time = time

$f factor applied to response quantity (optional)

$l lower limit (optional)

$u upper limit (optional)

expControlPoint Command

C H A P T E R 7

Chapter 7 expControlPoint Command 76

A control point represents a logical container of one or more directions (DOF) for sending command
signals to a controller or acquiring feedback signals from a data acquisition system. Control-points
represent logical groupings of output control channels or input data acquisition channels. To define the
control and data acquisition axes for a test configuration, the dir (direction) property of the
expControlPoint object is used. Each direction (DOF) is associated with a control channel and response
quantity. The set of control-points and the set of directions within these control-points define the control
axes and their expected order for the expControl object, which is using the control-points.

Similarly, the set of control-points and the set of directions within these control-points define the
feedback axes and their expected order, as they are received from the expControl object. Additionally,
the expControlPoint command allows for the definition of scaling factors as well as lower and upper
limits for each response quantity. The optional scaling factors can be used to convert between different
units and/or to account for similitude laws. Finally, the optional limits can be invoked if no safety limits
can be set in the control system.

EXAMPLE:

Define geometry for model

set mass3 0.04
set mass4 0.02
node $tag $xCrd $yCrd $mass
node 1 0.0 0.00
node 2 100.0 0.00
node 3 0.0 54.00 -mass $mass3 $mass3
node 4 100.0 54.00 -mass $mass4 $mass4

Define experimental control points

expControlPoint 1 1 ux disp -fact 0.003 -lim -0.01 0.01
expControlPoint 2 1 ux disp -fact 0.003 ux force -fact [expr 18.0/7.0]

Define experimental control

expControl LabVIEW 1 “130.126.242.175” 44000 –trialCP 1 –outCP 2

This example uses node 1 as an experimental control point. The first control point factors the
displacement in the x-direction by 0.003 and sets the lower limit to -0.01 and upper limit to 0.01. The
second control point factors both the displacement in the x-direction by 0.002 and the force in the
x-direction by [expr 18.0/7.0] = 2.57. The first control point is used for the LabVIEW trial command
(displacement) and the second for the LabVIEW output feedback (measured displacement and force).

Chapter 7 expControlPoint Command 77

Following are two control-point setups that represent the same physical system. In Setup 1, a single
control point has two directions (DOFs), and each direction will be mapped to either a translational or a
rotational control channel. The control system will have to transform the control channels correctly to
match the physical test rig (the NoTransformation experimental setup is used). Setup 2 receives the
correctly transformed response quantities from the appropriate expSetup object so each control-point
with a single direction (DOF) is mapped directly to a simple control channel.

Figure 31: Two fundamentally different control-point setups (courtesy of MTS)

Figure 32: Example with two control-points

Chapter 8 expRecorder Commands 78

These commands are used to construct the experimental recorder objects. The recorder objects provide
means for monitoring and recording response quantities of interest to the experimentalist. Figure 28
illustrates the naming convention for the signals entering and leaving the various OpenFresco modules.
The following terminology is used for the data flow: Any data that is flowing from the finite element
analysis software towards the laboratory is called 1) “trial data” (if entering an object/class) or 2) “ctrl
data” (if leaving an object/class); and any data that is flowing from the laboratory towards the finite
element analysis software is called 3) “daq data” (if entering an object/class) or 4) “out data” (if leaving
an object/class). The recorder response type strings follow the same naming convention.

Figure 33: Data flow and transformations for OpenFresco modules

In This Chapter

Control Recorder .. 79
Setup Recorder... 81
SignalFilter Recorder .. 83
Site Recorder.. 84

expRecorder Commands

C H A P T E R 8

Chapter 8 expRecorder Commands 79

Control Recorder

This command is used to construct an experimental control recorder object. It is used to record data
from the experimental controls such as control (target) and daq (measured) response quantities.

expRecorder Control <–file $fileName> <–csv $fileName> <–xml $fileName> <–binary
$fileName> <–database $tableName> <–time> <–dt> <–control $ctrlTag …>
<–controlRange $startTag $endTag> <–control all> respType

–file to record data to a file in ASCII format without headers

(optional: use only one of –file, –csv, –xml, –binary, –database)

–csv to record data to a file in ASCII comma separated format without
headers (optional: use only one of –file, –csv, –xml, –binary,
–database)

–xml to record data to a file in ASCII format including metadata

(optional: use only one of –file, –csv, –xml, –binary, –database)

–binary to record data to a file in binary format

(optional: use only one of –file, –csv, –xml, –binary, –database)

–database to record data to a database

(optional: use only one of –file, –csv, –xml, –binary, –database)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the experimental test.

$tableName name of table in database where results are stored. Each line of
the table contains the result for a committed state of the
experimental test.

–time to place the time or pseudo-time of the analysis in the first data
column (optional)

–dt to record data at a different time increment than the analysis time
step (this should be a multiple of the analysis time step)

$ctrlTag tag of experimental control to be recorded

$startTag, $endTag start and end tag of range of experimental controls to be
recorded

all to record all experimental control objects (Note: This option is
recommended only for xml file output as OpenFresco might
change the order of the experimental control objects)

respType defines the response type to be recorded. Since this depends on
the type of the experimental control the possible arguments are
described with the control commands.

Chapter 8 expRecorder Commands 80

EXAMPLE:

Define experimental control

expControl SimUniaxialMaterials $tag $matTags
expControl SimUniaxialMaterials 1 1
expControl SimUniaxialMaterials 2 2
...

Start of recorder generation

expRecorder Control -file Control_ctrlDsp.out -time -control 1 2 ctrlDisp
expRecorder Control -file Control_ctrlVel.out -time -control 1 2 ctrlVel
expRecorder Control -file Control_daqDsp.out -time -control 1 2 daqDisp
expRecorder Control -file Control_daqVel.out -time -control 1 2 daqVel
expRecorder Control -file Control_daqFrc.out -time -control 1 2 daqForce

End of recorder generation

This example creates experimental control recorders that write data to a file in ASCII format without
headers. Target (control) displacements and velocities as well as measured (daq) displacements,
velocities and forces are recorded for the previously created experimental controls with tags 1 and 2.

Chapter 8 expRecorder Commands 81

Setup Recorder
This command is used to construct an experimental setup recorder object. It is used to record data from
the experimental setups such as trial, output, target (control) and measured (daq) response quantities.

expRecorder Setup <–file $fileName> <–csv $fileName> <–xml $fileName> <–binary
$fileName> <–database $tableName> <–time> <–dt> <–setup $setupTag …>
<–setupRange $startTag $endTag> <–setup all> respType

–file to record data to a file in ASCII format without headers

(optional: use only one of –file, –csv, –xml, –binary, –database)

–csv to record data to a file in ASCII comma separated format without
headers (optional: use only one of –file, –csv, –xml, –binary,
–database)

–xml to record data to a file in ASCII format including metadata

(optional: use only one of –file, –csv, –xml, –binary, –database)

–binary to record data to a file in binary format

(optional: use only one of –file, –csv, –xml, –binary, –database)

–database to record data to a database

(optional: use only one of –file, –csv, –xml, –binary, –database)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the experimental test.

$tableName name of table in database where results are stored. Each line of
the table contains the result for a committed state of the
experimental test.

–time to place the time or pseudo-time of the analysis in the first data
column (optional)

–dt to record data at a different time increment than the analysis time
step (this should be a multiple of the analysis time step)

$setupTag tag of experimental setup to be recorded

$startTag, $endTag start and end tag of range of experimental setups to be recorded

all to record all experimental setup objects (Note: This option is
recommended only for xml file output as OpenFresco might
change the order of the experimental setup objects)

respType defines the response type to be recorded. The possible
arguments are described below.

Chapter 8 expRecorder Commands 82

 The valid queries to an experimental setup when creating an ExpSetupRecorder object are:

• trial displacements: trialDisp, trialDisplacement, trialDisplacements

• trial velocities: trialVel, trialVelocity, trialVelocities

• trial accelerations: trialAccel, trialAcceleration, trialAccelerations

• trial forces: trialForce, trialForces

• trial time: trialTime, trialTimes

• output displacements: outDisp, outDisplacement, outDisplacements

• output velocities: outVel, outVelocity, outVelocities

• output accelerations: outAccel, outAcceleration, outAccelerations

• output forces: outForce, outForces

• output time: outTime, outTimes

• control displacements: ctrlDisp, ctrlDisplacement, ctrlDisplacements

• control velocities: ctrlVel, ctrlVelocity, ctrlVelocities

• control accelerations: ctrlAccel, ctrlAcceleration, ctrlAccelerations

• control forces: ctrlForce, ctrlForces

• control time: ctrlTime, ctrlTimes

• daq displacements: daqDisp, daqDisplacement, daqDisplacements

• daq velocities: daqVel, daqVelocity, daqVelocities

• daq accelerations: daqAccel, daqAcceleration, daqAccelerations

• daq forces: daqForce, daqForces

• daq time: daqTime, daqTimes

EXAMPLE:

Define experimental setup

expSetup OneActuator $tag <-control $ctrlTag> $dir -sizeTrialOut $t $o <-trialDispFact $f>
expSetup OneActuator 1 -control 1 1 -sizeTrialOut 1 1
expSetup OneActuator 2 -control 2 1 -sizeTrialOut 1 1
...

Start of recorder generation

expRecorder Setup -file Setup_trialDsp.out -time -setup 1 2 trialDisp
expRecorder Setup -file Setup_trialVel.out -time -setup 1 2 trialVel
expRecorder Setup -file Setup_trialAcc.out -time -setup 1 2 trialAccel
expRecorder Setup -file Setup_outDsp.out -time -setup 1 2 outDisp
expRecorder Setup -file Setup_outFrc.out -time -setup 1 2 outForce
expRecorder Setup -file Setup_ctrlDsp.out -time -setup 1 2 ctrlDisp
expRecorder Setup -file Setup_ctrlVel.out -time -setup 1 2 ctrlVel
expRecorder Setup -file Setup_ctrlAcc.out -time -setup 1 2 ctrlAccel
expRecorder Setup -file Setup_daqDsp.out -time -setup 1 2 daqDisp
expRecorder Setup -file Setup_daqFrc.out -time -setup 1 2 daqForce

End of recorder generation

This example creates experimental setup recorders that write data to a file in ASCII format without
headers. Trial displacements, velocities and accelerations, output displacements and forces, target
(control) displacements, velocities and accelerations as well as measured (daq) displacements and
forces are recorded for the previously created experimental setups with tags 1 and 2.

Chapter 8 expRecorder Commands 83

SignalFilter Recorder
This command is used to construct an experimental signal filter recorder object. It is used to record data
from the experimental signal filters.

expRecorder SignalFilter <–file $fileName> <–csv $fileName> <–xml $fileName>
<–binary $fileName> <–database $tableName> <–time> <–dt> <–filter
$filterTag …> <–filterRange $startTag $endTag> <–filter all> respType

–file to record data to a file in ASCII format without headers

(optional: use only one of –file, –csv, –xml, –binary, –database)

–csv to record data to a file in ASCII comma separated format without
headers (optional: use only one of –file, –csv, –xml, –binary,
–database)

–xml to record data to a file in ASCII format including metadata

(optional: use only one of –file, –csv, –xml, –binary, –database)

–binary to record data to a file in binary format

(optional: use only one of –file, –csv, –xml, –binary, –database)

–database to record data to a database

(optional: use only one of –file, –csv, –xml, –binary, –database)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the experimental test.

$tableName name of table in database where results are stored. Each line of
the table contains the result for a committed state of the
experimental test.

–time to place the time or pseudo-time of the analysis in the first data
column (optional)

–dt to record data at a different time increment than the analysis time
step (this should be a multiple of the analysis time step)

$filterTag tag of experimental signal filter to be recorded

$startTag, $endTag start and end tag of range of experimental signal filters to be
recorded

all to record all experimental signal filter objects (Note: This option
is recommended only for xml file output as OpenFresco might
change the order of the experimental signal filter objects)

respType defines the response type to be recorded. Since this depends on
the type of the experimental signal filter the possible arguments
are described with the signal filter commands.

Chapter 8 expRecorder Commands 84

Site Recorder

This command is used to construct an experimental site recorder object. It is used to record data from
the experimental sites such as trial and output response quantities.

expRecorder Site <–file $fileName> <–csv $fileName> <–xml $fileName> <–binary
$fileName> <–database $tableName> <–time> <–dt> <–site $siteTag …>
<–siteRange $startTag $endTag> <–site all> respType

–file to record data to a file in ASCII format without headers

(optional: use only one of –file, –csv, –xml, –binary, –database)

–csv to record data to a file in ASCII comma separated format without
headers (optional: use only one of –file, –csv, –xml, –binary,
–database)

–xml to record data to a file in ASCII format including metadata

(optional: use only one of –file, –csv, –xml, –binary, –database)

–binary to record data to a file in binary format

(optional: use only one of –file, –csv, –xml, –binary, –database)

–database to record data to a database

(optional: use only one of –file, –csv, –xml, –binary, –database)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the experimental test.

$tableName name of table in database where results are stored. Each line of
the table contains the result for a committed state of the
experimental test.

–time to place the time or pseudo-time of the analysis in the first data
column (optional)

–dt to record data at a different time increment than the analysis time
step (this should be a multiple of the analysis time step)

$siteTag tag of experimental site to be recorded

$startTag, $endTag start and end tag of range of experimental site to be recorded

all to record all experimental site objects (Note: This option is
recommended only for xml file output as OpenFresco might
change the order of the experimental site objects)

respType defines the response type to be recorded. The possible
arguments are described below.

Chapter 8 expRecorder Commands 85

 The valid queries to an experimental site when creating an ExpSiteRecorder object are:

• trial displacements: trialDisp, trialDisplacement, trialDisplacements

• trial velocities: trialVel, trialVelocity, trialVelocities

• trial accelerations: trialAccel, trialAcceleration, trialAccelerations

• trial forces: trialForce, trialForces

• trial time: trialTime, trialTimes

• output displacements: outDisp, outDisplacement, outDisplacements

• output velocities: outVel, outVelocity, outVelocities

• output accelerations: outAccel, outAcceleration, outAccelerations

• output forces: outForce, outForces

• output time: outTime, outTimes

EXAMPLE:

Define experimental site

expSite LocalSite $tag $setupTag
expSite LocalSite 1 1
expSite LocalSite 2 2
...

Start of recorder generation

expRecorder Site -file Site_trialDsp.out -time -site 1 2 trialDisp
expRecorder Site -file Site_trialVel.out -time -site 1 2 trialVel
expRecorder Site -file Site_trialAcc.out -time -site 1 2 trialAccel
expRecorder Site -file Site_trialTme.out -time -site 1 2 trialTime
expRecorder Site -file Site_outDsp.out -time -site 1 2 outDisp
expRecorder Site -file Site_outVel.out -time -site 1 2 outVel
expRecorder Site -file Site_outAcc.out -time -site 1 2 outAccel
expRecorder Site -file Site_outFrc.out -time -site 1 2 outForce
expRecorder Site -file Site_outTme.out -time -site 1 2 outTime

End of recorder generation

This example creates experimental site recorders that write data to a file in ASCII format without
headers. Trial displacements, velocities, accelerations and time as well as output displacements,
velocities, accelerations, forces and time are recorded for the previously created experimental sites with
tags 1 and 2.

Chapter 9 Server Commands 86

These commands are used to start the server processes. These are used during local tests using the
middle-tier server and during distributed tests.

In This Chapter

startLabServer Command... 87
startSimAppElemServer Command.. 88
startSimAppSiteServer Command.. 89

Server Commands

C H A P T E R 9

Chapter 9 Server Commands 87

startLabServer Command

This command is used to start the laboratory server process. The laboratory (or backend) server is
started when running a distributed test, as shown in Figure 1b.

startLabServer $siteTag

$siteTag tag of previously defined experimental site object

EXAMPLE:

Define experimental site

expSite ActorSite $tag -setup $setupTag $ipPort <$dataSize>
expSite ActorSite 1 -setup 1 8091

Start the server process

startLabServer $siteTag
startLabServer 1

This example uses the ActorSite to start the server.

Chapter 9 Server Commands 88

startSimAppElemServer Command
This command is used to start the simulation application element middle-tier server process. The
startSimAppElemServer command is used when the simulation application or the finite element software
is using a generic-client element as shown in Figures 1a and 1b.

startSimAppElemServer $eleTag $port <–ssl>

$eleTag tag of previously defined experimental element object

$port IP port number of the middle-tier server

-ssl secure transactions using OpenSSL (optional)

EXAMPLE:

Define experimental element

left column
expElement twoNodeLink 1 1 3 -dir 2 -site 1 -initStif 2.8 -orient 0 1 0 -1 0

Start the server process

startSimAppElemServer $eleTag $port
startSimAppElemServer 1 8090

This example uses a twoNodeLink experimental element, and the middle-tier server has a port number
of 8090.

Chapter 9 Server Commands 89

startSimAppSiteServer Command
This command is used to start the simulation application site middle-tier server process. The
startSimAppSiteServer command is used when the simulation application or the finite element software
is using its own experimental element, as shown in Figure 6b.

startSimAppSiteServer $siteTag $port <–ssl>

$siteTag tag of previously defined experimental site object

$port IP port number of the middle-tier server

-ssl secure transactions using OpenSSL (optional)

EXAMPLE:

Define experimental site

expSite RemoteSite $tag <-setup $setupTag> $ipAddr $ipPort <$dataSize>
expSite RemoteSite 1 "127.0.0.1" 8091

Start the server process

startSimAppSiteServer $siteTag $port
#startSimAppSiteServer 1 8090

This example uses a RemoteSite, and the middle-tier server has a port number of 8090.

Chapter 10 Miscellaneous Commands 90

This chapter contains miscellaneous OpenFresco commands. These are utility commands that are
available in OpenFresco.

In This Chapter

Basic Model Builder .. 91
Node Command.. 92
Load OpenFresco Package .. 93

Miscellaneous Commands

C H A P T E R 1 0

Chapter 10 Miscellaneous Commands 91

Basic Model Builder

This command is used to construct the BasicBuilder object. This is the same command that is available
in OpenSees.

model BasicBuilder -ndm $ndm <-ndf $ndf>

$ndm dimension of model (1,2 or 3)

$ndf number of degrees of freedom at node (optional)

(default value depends on value of ndm:

ndm=1 -> ndf=1

ndm=2 -> ndf=3

ndm=3 -> ndf=6)

EXAMPLE:

model BasicBuilder -ndm 2 -ndf 2

This example creates a model with two dimensions and 2 degrees of freedom per node.

Chapter 10 Miscellaneous Commands 92

Node Command
This command is used to construct a Node object. It assigns coordinates to the Node object. This is the
same command that is available in OpenSees.

node $nodeTag (ndm $coords)

$nodeTag integer tag identifying node

$coords nodal coordinates (ndm arguments)

EXAMPLE:

node 1 0.0 0.0

This example creates a node with node tag 1 in 2D at the origin.

Chapter 10 Miscellaneous Commands 93

Load OpenFresco Package
This command is required when OpenSees is used as the finite element software. The DLLs need to be
in the same folder as the OpenSees executable. The “OpenFresco Installation and Getting Started
Guide” contains a list of required dll’s.

loadPackage OpenFresco

Reference:

http://neesforge.nees.org/docman/index.php?group_id=36&selected_doc_group_id=36&language_id=1
(http://neesforge.nees.org/docman/index.php?group_id=36&selected_doc_group_id=36&language_id=
1)

The OpenFresco Installation and Getting Started Guide is available from the above website.

Index 94

$

$avg, 68
$coords, 91
$cpTag, 20, 25
$ctrlTag, 49, 50, 52, 54, 56, 59, 61, 63, 65, 71, 72
$dofNdi, 37
$error, 69
$m, 45
$memOffset, 23

$Mij, 37
$Ndi, 37
$nodeTag, 74, 91
$numActCh, 23

$phi, 50, 52, 54, 61, 63, 65
$pos, 54, 61, 63, 65
$rampTime, 21
$rho, 34, 41, 43
$setupTag, 34, 37, 39, 41, 43, 46, 49, 71, 72, 73, 86, 88
$siteTag, 34, 37, 39, 41, 43, 45, 86, 88
$std, 68
$transTag, 34

A

ActorSite experimental site object, 71
Aggregator experimental setup, 49
appName, 30
appPath, 30

B

Basic Model Builder, 90
BasicBuilder, 90
beamColumn experimental element, 34, 35
boardName, 18
Box-Muller method, 68

C

cfgFile, 21

client, 6, 32, 71, 73
client-server, 6, 72
Computer Simulation Configurator, 22
control point, 74, 75, 76
Control Recorder, 78
control systems, 5, 6

corotTruss experimental element, 43, 44

D

-dir input, 57
dll’s, 92
DS1103, 18
DS1104, 18

dSpace experimental control, 18

E

expControl, 17, 28, 59, 61, 65, 75
expControl Command, 17
expControlPoint, 20, 25, 26, 74, 75
expElement Command, 32
experimental controllers, 16
experimental controls, 12
experimental elements, 6, 12, 16, 35, 38, 39, 41, 43, 46

Experimental Setup, 5, 6, 54, 55, 56, 57, 65
experimental setups, 5, 12, 16
experimental sites, 12, 16
expRecorder Commands, 77
expSetup Command, 48
expSignalFilter Command, 67
expSite Command, 70

F

finite element software, 6, 32, 87, 88, 92
Finite-Element-Adapter experimental control, 27
FourActuators experimental setup, 50, 51

G

generic experimental element, 37, 38
Generic-Client Element, 6, 87

H

host PC, 30
hybrid simulation, 5, 6

I

-iMod, 34, 37, 39, 41, 43, 45

invertedVBrace experimental element, 39, 40
InvertedVBrace experimental setup, 52
InvertedVBraceJntOff experimental setup, 54, 55

L

LabVIEW, 20, 75
LabVIEW experimental control, 20, 74
LBCB, 20
Load OpenFresco Package, 92
LocalSite experimental site, 72

M

middle-tier server, 32, 87
middle-tier-server, 6
MiniMost, 20, 74
MTS 793 system programming libraries, 22

Index

Index 95

MTS Computer Simulation Interface, 21
MTS Computer Simulation Interface and Configurator, 22
MTSCsi, 21
MTSCsi experimental control, 21

N

ndf, 90
ndm, 90, 91

-nlGeom, 39, 50, 52, 54, 61, 63, 65

node Command, 91
NoTransformation experimental setup, 56, 76
NTCP plugin, 20

O

OneActuator experimental setup, 59, 71, 72
OpenFresco, 5, 6, 9, 12, 16, 32, 89, 92

OpenFresco Installation and Example Guide, 6, 92
OpenFresco Interpreter, 16
OpenSees, 6, 28, 90, 91, 92
OpenSees Command Language Manual, 28
-outCP, 20, 26

P

predictor-corrector, 18, 30

R

RandomError experimental signal filter, 68

S

SCRAMNet, 23, 59
SCRAMNet experimental control, 23, 59
server, 6, 34, 37, 39, 41, 43, 45, 71, 86, 87, 88

Server Commands, 85
set variable, 13
-setup, 34, 49, 71, 86, 88
Setup Recorder, 80
ShadowSite experimental site, 73
SignalFilter Recorder, 82
SimDomain, 25
SimDomain experimental control, 25, 26

SimFEAdapter experimental control, 27
Simulink, 18, 30
SimUniaxialMaterials experimental control, 28, 52, 55, 57, 61,

64, 65
Site Recorder, 83
startLabServer Server Command, 86
startSimAppElemServer Server Command, 87
startSimAppSiteServer Server Command, 88

T

target PC, 30
Tcl, 9, 12, 13, 14, 15, 16
ThreeActuators experimental setup, 61
ThreeActuatorsJntOff experimental setup, 63
three-tier client-server architecture, 6
-trialCP, 20, 26

truss experimental element, 41
TwoActuators experimental setup, 65

twoNodeLink experimental element, 45, 46, 87

U

UndershootError experimental signal filter, 69

uniaxial material, 28

X

xPCtarget experimental control, 30, 31, 51

Notes 96

Notes

