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ABSTRACT

This report presents the findings of an analytical study regarding the propagation of exper-
imental errors during seismic performance testing of structural systems by an on-line
computer-control {pseudodynamic) method. Numericai methods for suppressing the error-
propagation effects are proposed and investigated, so that reliable experimental results can be

obtained.

The pseudodynamic method is a relaively new experimental technique which caﬁ simu-
late qu&si-StaticaHy the seismic response of large scale -struct.urai models using a computer-
controlled actuator system and a numerical integraifon algorithm. This method uses step-by-
step numerical integration to solve the equations of motion for a structural system with the
nonlinear structural restoring forces directly measured from the test specimen during an experi-
ment, and the mass and damping properties of the structure are modelied using idealized
analytical assumptions. In each step of a test, errors in restoring force measurements are intro-
duced into the numerical computations. Due to the large number of integration steps involved
in a single test, the cumulative errors can be significant even though the actual experimental

feedback srrors within each step are relatively small.

This study looks into the possible sources and the characteristics of experimental feedback
errors in pseudodynamic testing, and presents a general analytical technique {o study the erros-
propagation behavior of step-by-step integration algorithms, The error-propagation characteris-
tics of three explicit algorithms recommended for pseudodyanmic testing are investigated.
Equations are also formulsted to estimate the upper cumulative error bounds for both single-
and multiple-degree-of-freedom linear zlasiic tesis. In addition, error propagation in inelastic

testing is examined and compared with the linear elastic resulis.

The results of this study indicate that certain systematic experimental errors are most
detrimental to pssudadynamic testing, particularly to  multiple-degree-of-freedom  tests.
Significant energy effects are induced by these errors, and the higher frequency modes of a test

specimen can be erronecusly excited. Based on these findings, two numerical methods are



proposed to compensate for these error effects and to suppress the spurious growth of higher
frequency responses. It is shown that reliable pseudodynamic test results can be obtained if ade-
quate experimental equipment and technique, and appropriate numerical methods for mitigating
error-propagation effects are used. Guidelines for achieving reliable pseudodynamic test resulis

are also discussed in this report.
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CHAPTER 1
INTRODUCTION

1.1. The Pseudedynemic Method

For economic reasons, siructures are usually designed to deform inelastically when sub-
jected to severe earthgquake excitations. However, a well-designed structure should remain
stable and be capable of dissipating substantiai energy during rare and unusually intense carth-
guakes. To improve existing building code provisions based on this design philosophy, the ine-
lastic seismic performance of structural systems and components should be well understood,
This knowledge can be best accumulated through experimental testing. Experimental data can
also provide useful information for developing realistic analytical models for predicting the ine-

Iastic behavior of structures,

Most available experimental methods for seismic performance testing suffer from limita-
tions of one type or another [1] Recently, it has been suggesied that an on-line computes-
control {or pseudodynamic) method might be used to achieve the realism of shaking table test-
ing with the economy and versalility of the conventional guasi-stadic approach. The pseudo-
dynamic method is similar fo conventional guasi-static fests except that the displacements
imposed on a siructure are determined by a computer during a test. The ecmputation of the
displacements depends on the dynamic characterisiics of the siructure and the progressive dam-

age it suffers during the testing process.

in seismic response analysis, 2 structural sysiem can be idealizved by a diserete-parameic
model in which all the system mass is lumped at a finite number of nodal points, The equations
of motion of a discrete-parameter structural model are expressed by a family of second-order
ordinary differential equations. The basic function of the pseudodynamic method is {o solve
these governing equations of motion by means of siep-by-step numerical integration during the
test. This method is, therefore, similar in concept to general dynamic-analysis computer pro-
grams. However, instead of using idealized mathematical models of structural components o

oblain the linear or nonlinear force-deformation properties (stiffness) of a structure, the
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pseudodynamic method uses direct experimental feedback. Displacement computations carried
~ out during a test using direct numerical integration are based on the experimental feedback as
well as numerically prescribed damping and ineriia properties for the structure and 2 specified
ground motion record. Consequently, dynamic effects are fully accounted for in the resulting
disptacement history. The displacements computed in each step are imposed on the test struc-
ture quasi-statically through hydraulic actuators. This is immediately followed by data acquisi-
tion; and the computation is repeated in the next step. As a result of this step-by-step pro-
cedure, the dynamic response of a structure to a digitized excitation record can be realistically
simulated and monitored over a prolonged time span. A typical pseudodynamic test scheme is

iltustrated in Fig. 1.1.

1.2. Previous Research and Limitations

The pseudodynamic method was initiated in Japan at the Institute of Industrial Science of
the University of Tokvo and the Building Research Institute {BRI) of the Ministry of Construc-
tion {2-3]. Extensive experimental tests were carried cut by Japanese resecarchers using the
pseudodynamic method, from single-degree-of-freedom (SDCF) steel columns [3] to two- and
three-story steel and reinforced concrete structures 5], Test resulis correlated closely with
anatytical predictions. However, significant control problems were experienced in the testing of
a seven-story reinforced concrete structure at BRI under the U.S.-Japan Cooperative Research
Program [6]. The failure of the method in that multiple-degree-of-freedom (MDOF) stiff struc-
fure was attributed to inadequate instrumentation and the sensitivity of the system to small

displacement-control errors.

Besides the above mentioned problem, the pseudodynamic method has not been fully
verified. Modelling assumptions used in establishing the equations of motion may not realisti-
cally reflect the actual dvnamic characteristics of a structure. For example, idealized lumped-
mass and viscous-damping assumptions characterizing a lest specimen are not realistic for a

structure which has uniformly distributed mass and complex damping mechanisms. In addition,



since load is applied with a much slower rate in pseudodynamic tesiing than in an actual seisrmic
response, strain-rate effects may be significant in some cases. The concentration of load appli-
cation: through hydraulic actustors can induce large local defermatiﬁns or prematurs local
failures in 2 structure. Approximations used in step-by-step integration procedures alse intro-
duce numnerical errors. More significantly, various experimental srrors may exist. These can
sericusly affect test reliability, and lead to numerical instability because of error-propagation
characteristics of numerical integration algorithms. Some of these problems were addressed and
studied recently by researchers at the University of California, Berkeley 17] and the University
of Michigarr, Ann Arbor [8,9]. The resulis of these studies comfirmed the theoretical feasibil-
ity of the pseudodvnamic method. However, the reliability and accuracy of the method still

have to be verified through further analvtical and experimental rescarches.

1.2, MNMumerical Formulation

As pseudodynamic results are oblained by sclving the equations of motion for a structural
systern using step-by-step numerical infegration, a typical numerical algorithm will be ouilined
in this section. Due to the experimental nature of the pseudodynamic procedure [1.10], explicit
numerical algorithms are usually emploved. The reasons for this wili become clear in the fol-
lowing formulation. An explich algorithm is one in which the displacemeni solulion m an
integration step is assumed to be a function of previcus step solutions only. Utherwise, the
algorithm is fmplicir. One of the most widely used explicit algorithms is the central difference
method, currently used in pseudodynamic testing in Japan.

in a step-by-step integration process, dynamic equiibrinm of a MBPOF structural sysiem 15

enforced only at discrete time intervals:

ma +ev, +r =f (1.1

it which m and ¢ are the mass and viscous-damping matrices of the structural system; g, v,,

and ¥, are the asccelsration, velocity, and restoring force veciors at time 747 and §, is (he
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external excitation force vector. In this report, vector and matrix quantities are always
. represented by boldfaced variables, as in the above equation. The integration time step Af is
the interval at which response is computed. However, equilibrium is uswally not satisfied
between any two consecutive steps, / and (i+1). In the central difference method, velocity and

displacement are approximated by the difference equations:

d;y “df‘—l
= ———— 1.2
v, Al (1.2)

d:+l -2 di + d;—l
Ar

f

where d;,_;, d,, and d,,, are the displacements in three consecutive steps. By substituting Eq.

€1.2) into Eq. {1.1), we can solve for the displacement response in each step as

=i
m+—l£c

d,.; = ; A —r) +

—g—rc—m} d,-;+2md,] (1.3)

Therefore, the numerical solution is only an approximation. In spite of this, the method is of

sufficient accuracy if the step size At is small enough [1,12].

In a pseudodynamic test, the restoring force of the structure, r,;, is measured in each step,
rather than computed from a mathematical model as in conventional dynamic analysis. Assum-
ing that mass is lumped at each degree of freedom of the structure, we have a diagonal mass
matrix m. With this information and a suitably selected damping matrix ¢, the displacement
response can be easily calculated by means of Eq. (1.3). Thus, the pseudodynamic method is a

rational approach with both theoretical and numerical bases.

Although the central difference method has desirable numerical properties (stability and
accuracy), its applicability in pseudodynamic testing is still not justified. [t is not known
whether the numerical algorithm will remain stable and accurate under experimental conditions
where errors are numerous. The reliability of this algorithm is only proved for purely analytical

applications. However, experimental errors can be many times greater than any error that is
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intmduceé by numerical operations in a digital computer. Therefore, the effects of experimen-
tal errors _have io bé investigated. To be more specific, the feedback of r; is subjected (o efrors
because compuied displacements can never be exactly imposed on a structure. The degroe of
discrepancy depends on the accuracy of displacement contradiing devices. Experience in Japan
favors the use of the co.mpuieci rather than the measured displacements in Eq. (1.3), while res-
toring forces can only be obtained experimentally. No rational explanation is yet available o
Siﬁ;‘fﬁ_;m!'li thig choice. In any case, the errors in r;, have a significant consequence, In addition,
the testing of a stiff MDOF system presents & serious problem, because the force feedback in

this kind of system s very sensitive to smail displacement discrepancies [6]. All thess prob-

ferns will be studied in the rest of this report.

1.4. Error Propagation Effect

The adverse effect of experimental errors in pseudodynamic testing can be visuslized with
the help of some intuitive considerations. Errors are introduced in each step of ihe loading
process during 2 pseudodynamic test. As will be sxamined in more detail in the next chapier,
these errors may be caused by noises in elecironic instruments, loss of significance in analog o
digital conversions, the resolution and accuracy limitations of measurement and control insiru-
ments, and 50 on. The magnitudes of these errors depend on the instrumenis used, the ranges
for which the measurement instruments are calibrated, the features of the electronic sysiem,
and the overall design of the experiment. These errors will persist no matter how good the
instroments are, and how well the experiment is performed, aithough 2 careful setup and good

mstrumentation can greatly reduce their magnitudes.

in & pseudodynamic test, the displacement history of 2 structure advances n a discrete,
incremental manner through direct numerical integration. An actual test may invoive hundreds
or thousands of numerical time steps. The displacement increment in each siep depends on the
fesdback from the previous ones, Therefore, the errorg introduced ai each of these steps have &

cumulative effect and are carried over io subseguent computations. Consequently, even though
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a test is so designed that these errors are relatively small within each step, the result can still be

unreliable because of cumulation or propagation of errors.

1.5. Objectives and Scope

The main objective of this report is to study the propagation characteristics of experimen-
tal errors in pseudodynarmic testing, and to investigate possible improvement methods. Various
numerical algorithms are compared in terms of their error-propagation behaviors. These algo-
rithms include the basic central difference method, the summed form of the central difference
method, and the Newmark explicit method, which have been recommended for pseudodynamic
testing in previpous studies [?,8,}{0}. The work reported here offers a better insight into the
problems of the pseudodynamic test method, and reveals some useful guidelines for more reli-

abie and successful testing. The goals of this study can be summarized as:

(i) identifving the sources and effects of different error types, such that they can be

avoided or minimized in future experiments;

(i) identifying more desirable numerical algorithms and implementation schemes to minim-

ize the experimental error-propagation effects;

(iii} deriving analytical methods for predicting cumulative error bounds, such that error

tolerance limits and the reliability of test results can be assessed,

{iv) analyzing additional problems in MDOF testing, and developing methods of improving

stability and accuracy under adverse experimental conditions;

(v} assessing the reliability of testing inelastic structures, which is the main application of

the pseudodynamic method, and establishing criteria to ensure good test results.

In this report, we will not consider other inaccuracies, such as those caused by improperly
prescribed dynamic characteristics of a test specimen, and the approximations used in the
numerical algorithms. These problems have been examined in previous studies [1l, and they

are assumed to be not existing here. The design of a stable and accurate displacement-control
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systern, which ig investigated by other researchers [91) is bevond the scope of this study,
ever, the adverse error-propagation effects of the displacement-control errors are included as
part of the above ohiectives.

The contents of this report are arranged in the following order. In Chapter 2, we frst dis-
cuss the sources and types of experimental errors as well as their physical effects. Furthermore,
consisient mathematical expressions of these errors are established 1o serve as the basis for sub-
sequent mathematical developments. In Chapter 3, equations governing error propagation in the
step-by-step numerical algorithims are derived for the case of linear elastic S130F svstems, and
cornparisons are made among the different numerical methods. In Chapter 4, upper bounds of
cumulative displacement errors are established, and the effects of integration step size and of
different error types on error propagation are studied. In Chapter 5, the error analysis is
extented to MDOF systerns, Addiional problems are identified and suggestions are provided for
MBOF testing. In Chapter 6, we investigate orror sropagation in inelastic syvstems by means of
numerical strnulations and parametric studies. In Chapter 7, two muamerical methods are pro-
posed to compensate for the experimental error effecis, and to improve the siability and accu-
racy of MIDOF testing. Finally, general conclusions are drawn in Chapter 8, regarding error
propagation, experimental precautions, error checking and compensation procedures, snd the

rehiability of the psendodynamic method.



.8 -

CHAPTER 2
EXPERIMENTAL ERRORS

2.1. (lassification and General Expressions

Errors are inevitable in every experiment, no matter how carefully it is designed and per-
formed. Experimental results are usually acceptable if errors introduced during experiments are
reasonably small. In a pseudodynamic test, however, experimental feedback is used in the
step-by-step numerical integration. Errors introduced in any step are carried over to subsequent
computations. Consequently, the instantaneous numerical result in any step depends on the
accuracy of the feedback from every previous step during an experiment. Due to this cumula-
tive effect and the large number of computation steps involved, a test result may diverge
significantly from the correct result as an experiment proceeds, even though errors introduced
within a step are relatively small. The rate of error propagation in an experiment depends on
the numerical scheme used and the nature of these errors. Therefore, before going inte detailed
analytical evaluation of the error-propagation problem, it is heipful to identify the sources as
well as the nature of the errors which may be introduced into pseudodynamic experiments, and

to formulate them in consistent mathematical expressions.

The errors discussed herein will be restricted to those introduced in the experimental
environment. Errors of other sources are assumed to be insignificant and will not be con-
sidered in this study; these inciude numerical errors of integration algorithms and errors in the

idealization of test specimens.

In each step of a displacement increment in a pseudodynamic test, errors can be intro-
duced during the control and feedback processes as shown in Fig. 2.1. The displacement com-
puted in any siep /, 3,, may not be accurately imposed on the structure due to displacement
control errors ¢, In addition, the actually imposed displacement and the restoring force
developed by the structure may be incorrrectly measured and returned io the computer with
errors e" and e/, respectively. These confrol and measurement errors amount to the total feed-

back errors introduced in each step. The error amplification effect can be observed from the
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fzct that incorrect displacernents will result in erronecus restoving-force feedback, and tha
errors in restoring forces will lead to incorrect displacemenis being compuied and imposed in
the next step.

Experimental errors come from many sources. The control errors can be caused by: (i)
inaccurate calibration of displacement iransducers used in the closed-loop feedback system,
which controls hydraulic actuators; (i) resolution limits imposed by the analog-io-digital (A/D)
conversion of control signals transferred by microprocessors; (i) movement or deformation of
specimen’s supports; and (iv) lack of hydraulic actuator sensitivity (o keep up the speed of dis-
placement change. Similarly, the measurement errors can be caused by: (i) inaccurate measure-
ment transducers; (i} the A/D conversion of daia transferred; (iii) electrical noises; and (iv}
frictional forces in systern connections. Consequently, the actual displacement- and force-
feedback values are likely to deviate from the originally computed and expected quantities, Al

of these will be discussed in greater detail in the following section.

The control and feedback values in a MIDGOF pseudodynamic test can be related by the

general expressions as
d, =g, +e 220
f,=F +ef (2.2}

where Ei: is the specified displacement vector determined by numerical computation in step 4,
and ¥, is the restoring force that would be exeried by the test structure if d, were imposed. The
actual feedback values of these quantities are é, and £, with feedback errors e and &/, resoec-
tively, According to the definitions in Fig. 2.1, each of the error terms, e and e/, consists of

two contributing components:

e/ =kel+em (2.4}
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in which k is the elastic stiffness matrix of the structure.

As is the case with most experimental errors, e and e/ may consist of systemaric and ran-
dom parts. Systematic errors are those in which a regular pattern of occurrence can be
identified. They are usually caused by persistent inaccuracy in instrumentation and experimental
setup. The following discussions will show that these errors always tend to oscillate at the
response frequency of the test structure during pseudodynamic experiments, and that they have
a significant influence on experimenial results. Fortunately, these errors can often be avoided
or reduced to insignificant levels with careful instrumentation and test design. Random errors

are more difficult to predict or control.

2.2. Systematic Errors

We will show in later chapters that systematic errors can impose a severe error-
propagation problem on pseudodynamic testing. Some of these errors cause numerical instabil-
ity in pseudodynamic tests. For this reason, several possible sources of the errors and their
accompanying physical phenomena are discussed here. The physical phenomena illustrated will
help to explain the analytical results presented later and to identify other systematic errors

which might be present under various experimental conditions,

Systematic errors are usually due to inherent limitations of experimental equipment or
persistent instrumental inaccuracies resulting from improper usage. Digital microprocessors,
which are used to collect and transfer data during pseudodynamic experiments, can only store
numbers with finite precisions; values smaller than their resolution limits are lost. No struc-
tural supports are perfectly rigid or fixed: therefore, structural deformation is usually influenced
by support movement or deformation under applied load. In addition, restoring-force feedback
is always affected by friction in the physical connections of a test structure to actuators and sup-
port apparatus. Significant systematic errors may also result from improper experimenial tech-
niques, such as mis-calibrations of control and measurement devices, and inadequate adjust-

ment of servo controliers for the hydraulic actuators. However, most of these systematic errors
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can be avoided or siganificantly reduced by an appropriate uﬂdeﬁrstaﬁding of instrument &
tions, a proper selection of test apparatus, and careful insirumentation.

These errors are usually well-defined and reproducible, so that some definite phvsical
effects on experimental resulls can be observed, For simplicity, some of these effecis will be

described and illusirated here with a linear elasiic SDOF model. Similar phenomens cen be

observed, however, in general MDOF systems.

In the following discussions, we assume that only one scurce of ervors exisis at a time.
Furthermeore, the discussions are based on a tynical psendodynamic displacement-control loog,

as showy in Fig. 2.2, According to that, displacement is imposed in an incremental manner:
Ad = d — d_, (2.3)

and it is converted into a voltage signal before arriving at the actuator controller, which is
responsible for the control of actuator displacement. If no experimental srrors enter the coniral
loop, then é’,.ﬁ., is ecusal to 4., and Ad becomes Ad,. In Fig. 2.2, C,, €, and C, are the ealt-
bration factors for measurement and control devices. The SPAN adjustment option in the con-
rrofler can scale down the voltage excitation received by the coniroller. The SPAN is always

eqgual to or less than one, and O, should be equal to €, x SPAN under normal circumsiances.
(i) Transducer Calibration Errors

Linear potentiometers (displacement transducers) are used to moniior structural displace-
ments imposed by hydraulic actustors during pseudodynamic testing. The restoring forces
developad by the structure are measured with load cells (oad transducers) mounted on the
actuators. The displacement and force variations are indicated by the corresponding voltage
changes in the transducers. Therefore, the transducers need o be calibrated in order 1o convent
the outpui voltage into appropriaie physical uniis (e.g. inches, kips). The calibration factors for
the tranaducers, €, (force units/volt) or €, (displ. units/voit), are usually obizined by a least
sguare finear fit through a number of scattered points experimentally acquired for relating phy-

gical values 1o measured voliage.
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The deviation of these points from the least square fit in a typical calibration depends on:
~ the gualities of the instruments and supporting electronics; the precision used in installing the
instruments; and the care taken in designing their attachments. Generally, most displacement
and force transducers will exhibit a limited degree of nonlinearity. This error can be minimized
by using high guality instruments, and by proper calibration. For example, calibration of trans-
ducers over the expected range of test response rather than over their entire useful range can
substantially reduce the apparent nonlinearity of the instruments. In addition, by using time-
stable signal conditioners, line voltage regulators, and careful temperature compensation {(where

needed), the desired transducer accuracy can usually be obtained.

The calibrations of the transducers are very susceptible o errors due in part to the lack of
calibrated standards and to improper technigues. It is common to find instruments accurate to
within 0.1%, while it may be difficult to calibrate them in place to within 1.0%. To illustrate the
consequences of calibration errors, we will consider a simple case where the instruments and
supporting apparatus are sufficiently accurate to give a linear relationship between input and
output values. However, the coefficients C, and C, are inaccurately obtained, with small errors

+38C, and +8C,, respectively,

By using the displacement control loop shown in Fig. 2.2 and the erroneous calibration
factors to do voltage conversions, we can model the resulting control and measurement errors

as

3C, -
o d; 2.6
¢ e C; (2.6)
, 5C, -
91”” o ——— k ,

such that the total feedback errors are

el =10 (2.7
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) 5C, |, 8G) -
i {:«!7 Ca’

In deriving the above expressions, as shown in Appendix A, all the 8C,/C, and 8§C/C, ovms
with exponential orders greater than or equal to 2 are neglected. Furthermore, sccording to the
fact that the specified displacement ¢ and the measured force 7, constitute the force-
displacement relationship perceived in numerical computations, we define an effective secant

stiffness, &, for the structure as

k d =" (2.8)
In this case,
P PRLAS L LY {2.9)
B ) Cl o Crf o

We can alse note that Ej is equal to 5’, here.

From Eq. (2.73, we observe that the variation of the errors g/ is either in-phase or 180
degrees out-of-phase with the computed displacement response r?, depending on the sign of the
total relative calibration errovs. Fo. €2.9) indicates that mis-calibrations of the transducers can
change the effective siiffness of a test specimen, and that the asctual experimental resull will
correspond to the appareni stiffness k (see Fig. 2.3). This condition can be improved by a

careful calibration procedure such that 3C, and 8C, will be relatively smail.

However, we must also realize that recorded responses can still be in error due to i
ducer instaliation, even though the calibrations are accurate. In some types of load ceils, errors
can be induced by misalignment, which may introduce bending. If the musaligniment is substan-
tial or if the structuere undergoes large deformations, the meusured force may significantly differ
from the component in the assumed direction of loading. These force errors can usually be
corrected or minimized by careful design of the test setup. Displacement measurements can

alse suffer from misslignment problems and large deformation effects. In addition, certain
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types of transducers {or means of attaching transducers to structures) produce hysteresis or
 other types of nonlinearity under displacerment reversal. Again such errors in displacement can

be minimized by careful design of the test apparatus.
(ii} Actuator Displacement Calibration Errors

Since displacements are measured in terms of voltage by the transducers, the displace-
ment values computed by a computer must be converted into volts before being sent to the
actuator controller. This conversion requires an actuator displacement-calibration factor C;
(actuator displ./volt). This factor may or may not be equal to the potentiometer calibration C,,
depending on how the controller modifies the incoming signal, i.e. the SPAN adjustment. In
any case, it should be equal to C,; x SPAN (see Fig. 2.2). Otherwise, errors will occur in the
displacement control loop due to the inconsistency between the actuator and the displacement
transducer calibrations. We now consider the case where only the actuator is mis-calibrated,
and the transducer calibration is accurate. Assuming that C; is off by +3C, and that displace-

ment is imposed in an incremental manner, we have the control and measurement errors as

e;.’m = {}
8C, .
el =+ —L Ad, (2.10)
Cj
el =0

Consequently, the total feedback errors are

3C, -

eff=+ —L Ad, (2.11)
Cj

r= = 250 4 Ad

g = C i

See derivations in Appendix A. Similarly, the effective stiffness (as defined in Eq. (2.8))

becomes
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Eq. {2.11) shows that the errors vary either in-phase or 180 degrees out-of-phase wiik the
incremental displacement {or approximately the velocity response), depending on the sign of
8C;. The effective stiffness shown by Eq. {2.12) indicates that the apparent force-displacerment
relationship is not linear, and extra energy is either dissipated from or added into the response
motion, depending on the sign of 8C;. These are iliustrated in Fig, 2.4. This type of error can
be easily observed during experiments by monitoring e/, which should be extrernely smalf and
completely random in the absence of systematic errors. The magnitude of these errors depends
on how the actuator displacement is calibrated. If it is done with the actus! physical motion of
the actuator, then the calibration factor is likely to be influenced by the overshooting or
}aggéng~be§ind behavior of the actuator motion, which will be discussed fater. Most often, it is
better to compute C, directly from (y. Sometimes, a irisl-and-error approach is required o
achieve the best calibration result.

(iii} Fricrion

Friction exists in most of the moving components of a psendedynamic sysient, such as
clevises which connect a test structure Lo hydraulic actuaters and the base support, or the con-
tact surfaces between the siructure and ils supporting apparatus, Friction can influence the res-
toring forces developed by structural deformations. Therefore, the forces measured by load cells
are usually different from the actual restoring forces of a structure. If the frictional force in 4

STIOF svatem is assumed to be constant, then the force measurement eryors can be madeiled as

Ad,

g/ e f £3.13)
5l

in which / represents a constant magnitude, Consequently, the tctal feedback errors become

{2.14)



In this case, the effective stiffness is

2

Ad,

(2.15)
|ad|

P=-k+L
d,

These error effects are sketched in Fig. 2.5. The errors ¢ due to a constant friction form a
rectangular wave approximately in-phase with the velocity response, and have an energy-
dissipation effect. Friction also exists in other structura} connections, such as in the member
joints. In that case, the friction contributes to realistic Coulomb damping in structural

responses, and should not be considered as erroneous.
(iv) Analog to Digital Conversion of Electrical Signals

Floating-point displacement values evaluated by a computer are output in the form of
digital voltage signals, which are converted by a programmable digital-to-analog (D/A) con-
verter into analog voltage signals finally received by an actuator controller. Similarly, the ana-
log voltages measured from displacement and load transducers are converted into a digital form
by an A/D converter in the data acquisition system before being returned to the computer. In
these A/D conversions, the fractional parts are either fruncated, or rounded-off to the nearest
digit. Most D/A or A/D converters have microprocessors that handle 8 to 16 bit words. If a
D/A converter uses 12 bit words, then displacements can only be imposed in increments of
1/2048 (2/2"') times the maximum displacement for which the system is calibrated. While this
is a rather small fractional error, the relative error can become significant when the specimen’s
displacements are small or when the displacement used to calibrate the system is substantially
larger than the maximum displacement to be actually imposed. Assuming that the A/D conver-
sions are carried out by truncation, and that the absolute values truncated in the control and
feedback processes are %, ¢, and /", corresponding to those in displacement control, dis-

placement measurement, and force measurement, respectively, we then have

eja'( — ff"i”; {f’“l . ,‘(k

ld,|

Ad,
[ad |



a. .
e =— ff" — (2.1€)
| fl
7
€,'”" —_ r{rm i > -
I
according to the incremental displacement approach. The resulting feedback errors are
_ Ad a.
ef = gtm Tl gde OO0 gam S (2.17)
|| |ad | |4 |
d- Ad, F

~ - t‘.'d{‘ - - t! .
|4,-1] |ad,] 151

ef = k |t

The signs of displacement ¢ontrol errors are determined by Az?,-/ |:&c§,- |, while those of measure-

ment errors are determined by d,/|d;| and 7/]7|. The magnitudes of these truncation errors

are limited by

o

o) Mgy

t" "< 2[}1*}

de <« §dma‘ax| (7 Eg)
5 ané e

. lrmax‘

L zm-»!

where » and m are the numbers of bits in a word used in the D/A and A/D comverters

respectively; and 4, and ry,, are the maximum displacement and force calibrated for.

If 7" and /™ are niegligibly small, then the error expressions can be simplifisd to

e we “ﬁim {2.19)
|4d,]

i

lad|
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and the effective stifiness becomes

. o Ad.
P=11.- = d
di ;A 1|

|

k (2.20)

Egs. (2.19) and (2.20) are sketched in Fig. 2.6. Energy is added into response motion in
this case. In general, this type of errors can be detected by monitoring e M rounding-off is
used instead of truncation, the maximum magnitudes of these errors are reduced by half. More
importantly, the errors become random and the error-propagation effect is greatly reduced, as

will be shown later.
(v} Support Movement

In the case of a cantilever structure subjected to a horizontal base excitation, lateral dis-
placements imposed should be measured relative to a vertical reference line through the base of
the structure. Experimentally, that may not be easy to do because of possible deformations or
movements at the supports of the structure and of the reference frame. In a realistic sense, no
support is perfectly rigid or fixed. This imperfection can prevent correct displacements to be
imposed, and can subsequently alter the restoring-force feedback. Sometimes it is advanta-
geous o0 monitor and control structural displacement relative to a stationary reference point
instead of measuring the actuator piston movement internally. If this is the case, then the
movement of the actuator support frame will not affect imposed displacements. However, such
arrangements may adversely affect the stability of the hydraulic controt system. The movement
or deformation of a structural base support will tend to reduce the actual relative displacement
imposed. For example, considering an idealized slip movement of the base support in the
direction of load application, we can model the resulting displacement control and measurement

EFrors as

— (2.21)
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Fhe second equation is duc to the fact that the displacement transducer will appear as if the
correct struciural displacemeni had been applied. The constant 4, is the amount of slip, which

is assumed to pocur only at load reversal. Consequently, the feedback errors are

ef =0 (2.22)

and the effective stiffness is

k (2.23}

ey

]

.i
igjk
>

d |7

Egs. (2.22) and {2.23) are sketched in Fig. 2.7. We see that the effective stiffness is discontinu-
ous at load reversal. Wo energy effect is observed. However, energy-dissipating hysteresis can
happen if the base slip occurs gradually during the loading process. This is more likely to hap-
pen in reality, In addition, support deformation can increase the apparent flexibitity of 2 struc-

rure without any energy effect, as long as this deformation remains elastic.
{(vi} frconsistent Actuator Motion

Hydraulic actuators may either react too slowly or be too sensitive to a voltage change
during a displacement increment, depending on the gain control and the servovelve capacity.
The gain control determines the system’s speed to respond to a voltage change {gither from the
command signal or from a correction due {0 an error between the command and feedback sig-
nals), The maximum response speed is limited by the capacity of the servovalve. If the gain is
low or the speed required is above the capacity of the servovalve, the hvdraulic actuator will
respond insensitively and fall behind the command signal. On the cther hand, if the gain is oo
high, the actuator will overshoot and osciltate. If consistent overshooting or lagging-behind per-
sists in a test, the effective force-displacement relationship will result in energy-dissipation or

energy-addition lype of hysteretic curves (see Fig. 2.8). Again, the errors in these cases can be
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observed by monitoring e, which will show some systematic behavior if this situation occurs.

2.3. Random Errors

Random errors, like systematic errofs, result from many causes. Random electrical noise
in wires and electronic systems may slightly alter the electrical signals transferred during a test.
Random rounding-off or truncation in the A/D conversion of electrical signals provides addi-
tional random errors. Furthermore, lagging-behind or overshooting of the actuator motion, as
discussed before, may not be consistent from step to step. Instead, they may appear as random
alternations. The supports of displacement transducers may not be secure enough, so that the
transducer readings can be contaminated by some external mechanical disturbances. These are
only a few possible causes. Random errors are so irregular that no specific physical effects can

be anticipated.

2.4. Concluding Remarks

We have reviewed some possible sources of experimental errors as well as their nature
and physical effects. Some idealized systematic errors are modelled in mathematical forms to
reveal their effects on structural response computations. Similar physical phenomena can also
be observed in other systematic errors, which can usually be identified easily. We can observe
from the linear elastic SDOF model that systematic errors tend to be directly in-phase or 180
degrees out-of-phase with structural responses {displacement or velocity). The significance of
such systematic effects can be observed from the stiffness influence or energy-changing hys-
teretic behavior. The response motion of a structure is very sensitive to these persistent
stiffness and energy changing effects. In the case of random errors, no systematic physical
effects can be inferred.

The magnitudes of these errors can be estimated from the properties of the instruments
and electronic systems used, and also from the mechanical design of the experimental setup.

Some errors can cancel one another (e.g. some dissipate energy and some add energy), while
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others can reinforce one another. Most systematic errors can be detected during pseudo-

dynamic experiments by monitoring the displacement-feedback errors e or by the unusual

energy change in the response motion.
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CHAPTER 3

EVALUATION OF INTEGRATION ALGORITHMS
BASED ON EXPERIMENTAL ERROR PROPAGATION

3.1. Recursive Form of Integration Algorithms

To identify the basic error-propagation characteristics in pseudodynamic tests, we begin
our studies with linear elastic SDOF systems. The step-by-step numerical integration algo-
rithms, which are used to solve the equations of motion, will be expressed in a recursive matrix
form. By introducing the experimental feedback errors into this recursive formula, we can
arrive at a general error-propagation equation. This equation yields useful information regarding
the characteristics of error cumulation in the numerical algorithms. Based on that equation,
comparisons will be made among the different numerical methods which have been recom-
mended for pseudodynamic application. This development also serves as a basis for more

extensive error-propagation studies which are presented in the subsequent chapters.

The dynamic equilibrium of a SDGOF system at time 1 = ; A can be written as

ma +cv,+r=/f 3.1

where m is the sysiem mass and ¢ is the viscous damping coefficient; @, and v, are the accelera-
tion and velocity responses at / At, and r, is the restoring force developed by system deforma-

tion. In a linear elastic system, we have

r=4kd (3.2)

it which & is the elastic stiffness and 4, is the corresponding displacement response. We can
numerically solve Eq. (3.1) during pseudodynamic tests by means of the central difference
method, which is formulated in Eq. (1.3) for generat MDOF systems. For a SDOF system, the
central difference method, as well as any other step-by-step integration algorithms, can also be

expressed by a recursive matrix formulation [12,13} as
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Xu=Dx, —lrnn+1fin (3.3)

in which ¥, is the soiution vector at 1 = ; Ar. The solution vector contains the appropriate dis-
placement, velocity, and/or acceleration terms, ie. x; = {d;, v, @, di_ysene} 7. The parame-
ter v is an integer which is equal to either 0 or 1, depending on the specific numerical algorithm
we are considering. Finally, D and I are the characteristic matrix and vector, respectively, of the
specific numerical method. This recursive formula is not as efficient as Eq. {1.3) for numerical

computations, but is convenient for formulating the error-propagation equation.

From Eq. (3.2), we can also express the restoring force in terms of the sclution vector x;

as

i = s X, (3=4}

where S is a row matrix that depends on the contents of x, and the stiffness . For example, S

is simply (&, 0, 0} if x, = {4,, vi. a,}7. Substituting Eq. (3.4) into Eq. (3.3), we have

xa=Ax, +L fi. {3.5a)
where
D18 ifo=20
Az{ﬂ+1$”i) ify=1 (3.50)
and

I ifv=20 3

L=la+ist1 ifw= -S¢)
Matrix A is called the amplification matrix. Vector L is the load operator, whereas [ is an iden-
tity matrix. The amplification matrix A can be used to determine the stability and accuracy of
an integration algorithm [12,13]. In addition, we will show that A is related to the error-

propagation characteristics of a numerical algorithm as well.
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3.2. Error Cumulation Equation

The significance of experimental errors has been qualitatively discussed in Chapter 2. To
gain a better understanding of the cumulative error growth in pseudodynamic experiments, we
now formulate the error-propagation equation by introducing the feedback errors, ¢/ and e/,
discussed in Sec. 2.1 into Eq. (3.3), the recursive formulation of integration algorithms. From

the force-feedback errors e/, we define a new term:

elf= k™1 g (3.6)

!

which is the amount of displacement error equivalent to e/, Using this new error term, we can
compare the propagations of displacement- and force-feedback errors more conveniently. Con-

sequently, we can rewrite the control and feedback relationships in Egs. (2.1) and (2.2} as
d=d + e (3.7

Fo=k (d + e (3.8)

Before introducing the error terms into the recursive formula, we have to transform Egs.

(3.7} and (3.8) into a vector form compatible with the definition of x,. They become
%, =X, +ef (3.9)

=8 (X, +e (3.10)

in which ¥, is the computed solution vector which contains 3,':_ %, is the vector that contains the
corresponding measured guantity c;’,; and e’ and e/ are the error vectors with elements e and
e in locations corresponding to that of ¢ in X, and with zero values elsewhere. Now, assum-
ing that both displacement- and force-feedback values are used in the computation of structural
response during a pseudodynamic test, we replace x, and r., in Eq. (3.3) by %, and 7,
respectively. As a result, the computed solution is no longer the true numerical solution. To

indicate that, we also replace x,., in Eq. {3.3) by X,,;, assuming that x,., represents the true
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numerical solution without the influence of experimental errors. Finally, by substituting Eqs.

(3.9) and (3.10) into Eq. (3.3}, we have

Ea=DE +e)—18 &y, +ei)+1/fin (31D

Following the subtraction of Eq. (3.3) from Eq. (3.11), we have

=A% +Bel—LSel, (3.12a)

where

e, =X, — X, 3.12b)
(3.12c)

Therefore, e, is defined as the total cumulative error in the computed solution X,. Correspond-

ingly, there exists a cumulative displacement error:

7 =d ~d (3.13)

which is an element of e,.

By recursive substitutions of €’s in Eq. (3.122) and assuming that €,_, equals zero (i.e.

no errors in the first step), cumulative errors can be expressed as

2 i
To= 3 A" Bel— ¥ AT LSeH, (3.14)
je -y f=

The first term on the right hand side of the equation is the cumulative error due to

displacement-feedback errors and the second term is due to force-feedback errors.

Note that if the computed solution X, is used instead of the measured quantity X, in the

numerical computations, then we simply have
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g =— Y A LSed (3.15)

Eq. (3.14) is the matrix form of the error-propagation equation. The total cumulative errors
can be calculated if the error vectors e/ and e/ are known. However, this equation is not very
informative. The computation involved to obtain €, is tedious. Therefore, we will further sim-

plify Eq. (3.14) in the following section.

3.3. Cumuiative Displacement E:'mrs.

Before acquiring a more useful equation of cumulative displacement errors from Edq.

(3.14), we shall review the following mathematical relations.

If a matrix A has dimensions N x N and N distinct eigenvalues, Ay, Az, Ao, and Ay,

then there exists a diagonal matrix J such that

Ji=@""A" @ (3.16)

in which ® = [¢,, ¢5...... ¢+] and J = diag (x|, As....., Ap); and @, is an eigenvector of A,
corresponding to the eigenvalue A,. This similarity transformation is the property of an eigen-

value problem. Hence, for any N-dimensional vector y, which is defined as

Yy, = AH Yn (317}
where A satisfies the condition in Eq. (3.16), we can have the expression:

Yy = LN }‘in + €2 )\2” + o + Cin A:\i (318)

in which y,; is the j th element of y,,; and ¢;1, ¢;2,...., and ¢;y are constants determined by the
eigenvectors of A and the initial vector y.
If f., is equal to zero in Eq. {3.5a), the recursive formula represents the free-vibration

response of a SDOF system. Furthermore, by letting /+1 equal to n and performing recursive

substitutions, we can transform Eq. (3.5a) into exactly the same form as Eq. (3.17). Therefore,
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we can conclude that Eq. (3.18) should represent the numerical solution of a free-vibration
response.

As will be seen in the next section when specific numerical algorithms are discussed, the
amplification matrix A is usuaily a 2 x 2 or 3 x 3 matrix. From Eq. (3.18), it is apparent that a
numerical algorithm can produce a bounded oscillatory free-vibration response if two of the
eigenvalues, X) and A,, are complex conjugates and |x;] < [A; 3] < 1 (f A; exists at ali). These
are the stability conditions which can be met if wAr is within a certain range; where w is the
natural frequency of the structural system and is equal to vk/m . Assuming that these condi-

tions are satisfied, we can represent A; and A, by

M= 4 + i B =800 (3.19)

where / = ~/—1. In this expression, the following relations are implied:

- In (4° + BY
B e 3.203)
£ 55 (
_ B
1 = arctan !:Z {3.20p)
it is further defined that
=0
@ == v {3.20¢)
By substituting Eqs. (3.19) and (3.20c) into Eq. (3.18) and assuming N = 3, we have
Yo = g fdAm (¢;) cos @AM + ¢, sin @Am) + ;3 A {3.21)

The parameters in the above equation have some physical interpretations. Since Eq. (3.21) is a
direct consequence of Eq. (3.18) and thus presents a free-vibration response, £ and @ are the
apparent damping ratio and frequency of the response computed by a numerical algorithm. For

this reason, these quantities are called the numerical damping ratio and numerical Jrequency of a
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dynamic system, in constrast to the real dynamic properties of the system under a closed-form
solution. As a matter of fact, they often serve as indicators of numerical accuracy. The third
eigenvalue, A;, if it exists, is responsible for a spurious numerical solution, which will readily
approach zero as n goes to infinity when [hsl < ihya] < 1. A more detailed discussion on this
subject can be found in Reference 13. In our case, these results can be applied to the develop-
ment of a simplified error-propagation equation.

Now, returning to the problem of error propagation, we apply the previous results into
Eq. (3.14) by expanding it in the form of Eq. {3.21). In the expansion, we will only consider
the cumulative displacement errors ¢, in vector €, As a result, we can have the following

expression for cumulative displacement errors:

Cit = 2 Qg = z, B (3.22a)
i=1—v j=1—v
in which
a,, = e @3 (g, cos wAt(n—i) + ay, sin aAt(n—-i1+ a3 AN~ (3.22b)
B, = e MU= [p cos BAH(n=i) + by, sin wA{n—D] + b3 AT (3.22¢)

The constants a,,, 41, @3,. by, by, and by, can be determined by the values of a;, @i
¢ian i By Busn i» and By4o ,, respectively, which, in turn, can be computed from the equa-

tions:

@, =A""Be/ (3.23a)

B.,=A""LSel, (3.23b)

Eq. (3.22) is a general equation describing the cumulative disptacement errors in an under-
damped dynamic system. However, further simplification of the equation is possible when

specific numerical methods are considered.
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3.4. Error Propagstion in the Explicit Numerical Algorithms

Three explicit numerical integration algorithms which are suitable for the pseudodynamic
method will be compared here, based on the error-propagation properties, by using Eq. (3.22).
They are the basic central difference method [10,12] which is currently used in Japan for pseu-
dodynamic testing as discussed in Sec. 1.3, the Newmark explicit method [7,11], and the
summed form of the central difference method (8,14}, These three methods are algebraically
identical to one another. They are transformable to one another by algebraic manipulations, and
have the same accuracy and stability properties (see Appendix B). However, their error-
propagation characteristics can be different due to the different numerical formulations. In the
following, the numerical formulations of the three explicit methods are illustrated to provide
necessary information for the error studies. For simplicity, viscous damping is neglected in the

equation of motion.
{i) Basic Central Difference Merhod

The algorithmic form for pseudodynamic computation is

A
dyr=2d —d_ |+ o —r) (3.24)
and the corresponding recursive form is
) 2 —1j] 4 At fm
d,‘ = 1 O d{,_] + ] (fi - r!) (325)

{ii) Newmark Explicit Method

The algorithmic form for pseudodynamic computation is

2
d,+,=d,-+Atv,+%—a,

(Fre1 — riv) (3.26)

1
ity _’;
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Vigr =V + %ﬁ (a; + aiyy)

and the corresponding recursive form is

it 1 Ar A2 1d 0
Viel 0 1 Ae/20 4w+ 3At/2my (fey — risy) (3.27
Qe 0 0 0 a; 1/m

(iii} Summed Form of the Central Difference Method

The algorithmic form for pseudodynamic computation is

dy=d + At z, (3.28)
At
Ziy1 =z + ""; (ft+l - '}'H)
and the corresponding recursive form is
d; s
Ziti -

From the recursive formulations above, we can readily identify for each method the

1 Ar
0 1

4; 0
z + At/m (f,i.H - r,.,H) (329)

characteristic matrices and vectors described in Egs. (3.3) to (3.5). They are shown in Table
3.1. Although the amplification matrices, A, are different among the three numerical methods,

their eigenvalues are identical. The eigenvalues A;, are equal to 4 =+ /B, with

A =1-wArY/2 and B =4 — (w?Ar? — 2)%/2. The eigenvalue A is equal to zero in the
Newmark Explicit method, and it does not exist in the other two. Consequently, the stability
limit of the numerical methods is wAr < 2 (see Appendix B). Furthermore, the numerical
damping ratios £ are equal to zero, according to Eq. (3.20). The parameters ay,, ay, by, and
b, in Eq. (3.22) can be obtained by means of Eq. {3.23), with the characteristic matrices and
vectors in Table 3.1. These parameters are listed in Table 3.2. Substituting these parameters

back into Eq. (3.22), we can simply express the cumuiative displacement errors for all three
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methods as

1 7
e = C 3 efsin @At(n—N4¢) + D T, e/sin @At (n—~i+1) (3.30)

=1 f=1

where € and D are error amplification faciors. The parameters in the above equation are:

{i} In the Basic Ceniral Difference Method,

\/5—414
Cx____._.._.__.__
B
2(4 -1
3
D 3 (3.31)
- g |28
¢ = arctan 7 4 I}

(i) In the Newmark Explicit & Summed-Form Central Difference Methods,

V2 (1 —4)

€=

24-1)
D= S5 (3.32)

B
¢ = arctanil_A}

A sample derivation of Eq. {3.30) for the basic central difference method is shown in Appendix

C.

3.5. Comparisons and Comments
Eq. {3.30) indicates how cumulative displacement errors propagate in the three different
numerical methods. The first term on the right hand side stands for the cumulative errors due

to displacement-feedback errors, and the second term is due to force-feedback errors. By
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observing Eqgs. (3.31) and (3.32}, we can conclude that the Newmark explicit method and the
- summed form of the central difference method have exactly the same error-propagation proper-
ties, while the basic central difference method has a different amplification factor C.
Amplification factor D is the same for all three methods. Therefore, force-feedback errors

have similar effects in these numerical algorithms.

Some error-propagation characteristics can be revealed by studying the variations of
amplification factors € and D with respect to wAt, From Eqgs. (3.31) and (3.32}, the absolute
values of € and D are plotted against wAr in Fig. 3.1 for the three methods, We see that the
basic central difference method is a poor scheme in terms of error propagation, because the
value of |C| approaches infinity as wA7 goes to zero. This means that cumulative errors can be
extremely large when wAr is small. However, a small value of wAr is favorable to numerical
stability and accuracy {see Appendix B}. Hence, good results are difficult to obtain with the
basic central difference method because it is desirable to have numerical stability and accuracy
on one hand, and small cumulative errors on the other. For the other two methods, this
dilemma does not exist because both |C| and | D] diminish, with |D] at a faster rate, as the

value of wAr decreases.

However, the central difference method can be improved by using the computed displace-
ment 4, (rather than the measured displacement 6’,) in the step-by-step computation. If this is
the case, the error term containing e/ disappears from Eq. (3.30). This is a significant reduc-
tion of cumulative errors when wAr is very small. The use of the computed displacement may
not be necessary for the other two methods, but it is still desirable to do so. One argument for
proposing the use of the measured displacement is that this can preserve the actual constitutive
property of the test specimen, because any error in displacement control can be offset by the
corresponding error in force measurement. In reality, this is of no significance in the numerical
computations. For example, we can consider the case when displacement control is the sole
source of errors, so that ef = ¢/ = ¢/, according to Egs. (2.3), (2.4), and (3.6). By substitut-

ing these errors into Eq. (3.30), we can visualize that significant cancellation can occur only if
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the factors C and D have similar magnitudes and opposite signs. However, according to Fig.
3.1, the magnitude of C is always several times larger than that of D whenever wdr is srnali
(from experience it is preferrable to have w At < 0.5 in order to achieve numerical accuracy,
see Appendix B). Therefore, we can conclude that the use of the measured displacement 3;

has no numerical benefit; instead, it is more likely to aggravate the error-propagation problem.

Moreover, because of the existence of other error sources, the interaction of
displacement- and force-feedback errors is unpredictable. By eliminating one source of inaccu-
racy, i.e. the displacement-feedback errors, we are always at a better position to obtain more
accurate and predictable experimental results, For these reasons, the use of the computed dis-
placement is recommended for all numerical methods discussed here. If this is the case, then
the three methods will have identical error-propagation characteristics, because of the same
amplification factor D. This is assumed in subsequent discussions. However, since the errors
e are partly contributed by ¢, one must still ensure that the control system is capable of limit-

ing e’ ’s to insignificant levels.

3.6. Numerical Examples

As an illustrative example, a pseudodynamic test is numerically simulated. Some trunca-
tion errors are generated in the simulation using the pseudodynamic testing facilities at Berke-
ley. Besides a mini-computer, the main testing facilities include a 12-bit word prograrmmable
D/A converter for sending analog displacement-control signals to an actuator controller, and a
14-bit word high speed data acquisition system (A/D converter) for collecting and returning the
displacement and force measurements to the main computer. In this example, we calibrate the
displacement transducer to a maximum range of 0.5 in., such that the D/A converter has a
resolution limit of 0.5/2048 in. Displacement values smaller than that are truncated. The reso-
lution limit of the data acquisition system is 0.5/8192 in. Therefore, truncation errors are

mainly generated by the D/A converter.
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A SDOF mode! with a period of 0.332 sec is simulated by a computer program to substi-
tute for an actual test specimen. In each step, displacement is computed and sent directly to
the data acquisition system through the D/A converter. Consequently, the displacement value
returned from the data acquisition systefn will be slightly different from the computed one, due
to the truncations and electrical noises occurring in the data transfer. The returned displace-
ment value is then used to compute the restoring force of the specimen with the simulated
stiffness. The computed restoring force and the displacement returned from the data acquisi-
tion system are subsequently use& to compute the next displacement increment. This process
is similar to a real pseudodynamic fest, except that a mathematical model is used instead of a
real specimen. This simuiation has the advantage of eliminating other possible sources of
errors which might occur in an actual test. As a result, experimental errors, which will occur

mainly in the A/D conversion of displacement-control signals, can be described as e¢f = ¢/¢

With the above simulation model, we can obtain the cumulative errors resulting from the
basic central difference method and the Newmark explicit method, as shown in Figs. 3.2 and
3.3, respectively. In both cases, Afis 0.02 sec. Graph (a) of each figure shows the errors ef (or
el%, which are obtained by subtracting the computed displacement values from the values
returned from the data acquisition system. These errors consist of both random and systematic
components. Graph (b) indicates the total cumulative errors &, which are directly measured
from the difference between the simulation result and the exact numerical solution. Graphs (c)
and {(d) plot the portions of the total cumulative errors due to efand e/ respectively. They are
analytically computed by using Eq. (3.30), with the fact that ef is equal to ¢/ It is apparent
that the sum of the values in Graphs (¢) and {(d) is equal to the curve in Graph (b). This
proves the validity of Eq. (3.30), which we mathematically derived. By comparing Graph (b)
with Graph (d) in each figure, the advantage of using the computed displacement in the numer-
ical procedure is clearly demonstrated. We can also see that the total cumulative displacement
errors in Fig. 3.2 are larger than those in Fig. 3.3 because of the larger C factor in the basic

central difference method.
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A similar phenomenon is observed in another example with the same o, but a Ar of 0.01
sec. This should give us a better solution if no experimental error exists. The resulis obtained
with the basic central difference and the Newmark explicit methods are piotted in Figs. 3.4 and
3.5, respectively. Graphs (b) and {(c} in both figures show larger cumulative errors than the
previous cases. This increase of cumulative error magnitudes can be explained by two facts.
The growth of the amplification factor C with decreasing wAr in the basic central difference
method is one of the reason. The other fact is that doubling the number of integration steps
doubles the number of input errors. This contributes to the larger cumulative errors in the
Newmark explicit method, since the value of (' declines slightly when wA¢ 1s reduced. There-
fore, the use of the measured displacement is highly undesirabie. The cumulative errors in
Graph (d} of each figure retain approximately the same magnitudes as before. This indicates
that the cumulative errors due to force-feedback errors do not change significantly with step
size. This phenomenon will be explained in the next chapter with an idealized model of sys-
tematic errors. It will also be shown that the cumulative errors due to force-feedback errors

will diminish to zero as wA7 decreases if the errors ¢/ are totally random.
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CHAPTER 4

ERROR PROPAGATION CHARACTERISTICS
IN SDOF LINEAR ELASTIC SYSTEMS

4.1, General Cumulative Error Equation

Ag illustrated in Chapter 3, using the numerically computed displacement d, in the step-
by-step integration can reduce cumulative error growth in pseudedynamic testing. The error-
propagation studies in the following are based on this most desirable computational approach.
Conseguently, all three numerical methods discussed previously should have identical error-
propagation properties; thus no specific method needs to be distinguished in our discussions
herein. From Eq. (3.30), the general expression of cumulative displacement errors becomes

"
Eor =D Y esin mat{n—i+1) (4.1

=1
in which the value of D can be determined by Fq. (3.31); and & is the numerical natural fre-
quency of a system, as represented by Eq. {3.20b). By returning to the derivation of the above
equation in Chapter 3, a numerical analogy can be observed. Eq. (4.1) is developed from Eag.
(3.12a), the recursive cumulative error equation, without the B e/ term in it. With this term
eliminated, Eq. €3.12a) has exactly the same formulation as Eq. (3.3a), which is a recursive
numerical solution of the equation of motion. Therefore, the cumulative displacement errors
represented by Eq. (4.1} can be considered as the displacement response of a structure to some
error excitations ¢/ (= S e/9). That becomes obvious if any error in the restoring force r, is
transferred to the right hand side of the equation of motion {(Eq. (3.1)). The error term is then

numerically equivalent to a force excitation in addition to f,.

Since Eq. (3.12a) is ture for any numerical algorithm which can be expressed in terms of
Eg. {3.5a), the above analogy holds for any of the numerical methods we are considering. As a
result, error-propagation characteristics depend more on the dynamic properties of a structural
system than on the numerical method used. Besides that, the error-propagation behavior

should be sensitive to the nature or the frequency content of errors e/, as a dynamic response
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is to the frequencies of external excitations,

As mentioned in Chapter 2, two types of experimental errors exist; random and sys-
tematic. Systematic errors always tend to oscillate at the same frequency as the system response.
If a system oscillates at its numerical natural frequency &, a resonance-like effect can be created
in error propagation. Resonance is a phenomenon during which the energy in the response

motion of a systern can grow without bound.

To identify the error-propagation characteristics, we now separately consider the different
ivpes of errors. The cumulative error growth due to random errors will first be investigated
from: a statistical approach. Systematic errors will be studied using an idealized sinusoidal error
model. In reality, all experimental errors are composed of these idealized forms. Therefore, the
results of these studies provide a realistic picture of error-propagation characteristics in nseudo-

dynamic experiments. In addition, they can be used to assess the reliability of test results.

4.2. Random Errers

In general, a displacement drift and a symmetrical cumulative error growth can be
identified from the results of random errors. The drift effect is usually caused by a constant

offset in the error signals.

4.2.3. Drift Effect

Experimental errors of constant value can produce a displacement drift about the time
axis of a displacement response history, That can be secen when /" in Eq. (4.1) is replaced by a
constant ¢ If this is the case and whv is small, we can obtain from Eq. {4.1) the cumulative

EITOr EXpression:

5., == 2o C sin? %nam (4.2)
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in which the factor ( i specified by Ea. {3.32). The mégt&itude of { is approximately equal to
1 when wii is small, as shown by Fig. 3.1b. This indicates that cumulative errors are only
slightly amplificd here {by a factor of 2}. Therefore, drift effect is usually negligible when e, is

small. In reality, e can be a constant offsei in random signals, such as a non-zero mean.

4.2.2, Statistical Erver Bound

Random errors can be described in terms of their statistical properties. It is reasonable io
assume that these properties are invariant with time throughout a test, because they depend
mainly on the test apparatus used. In the following studies, we assume that the random errors
have a mean equal to zero and a standard deviation of S.. We will not lose generality by the
zere mean assumption. in general, any random errors are the sum of a random component
which has a zero mean, and a constant which is equal to the total error mean. These two com-
ponents can be treated separately, and their error-propagation behavicrs can be superimposed
on each other to give the total effect. That is true as long as the response is linear. The con-
stant error produces a drift effect with a small error amplification factor, as discussed in the
above section. Therefore, the constant component has no significant influence on the results
presented here. Furthermore, we assume that the errors measured at different time steps of a
single test are completely uncorrelated to one another. These properties lead to the foliowing

expressions:

E{e/) =0
E’(e;lde‘;’d) = O (43)
VAR{(e) = §?

in which E{e/) and VAR(e/"} are the mean (or expectation) and variance of random errors at

step i, and E{e/“e/") is the covariance when the mean is zero.
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From Eq. (4.1} end the zero mean condition, the cumulative errors £.4: Bave a mean
equal to zero also. This leads to the fact that VAR({?, ) is equal to E(&7,,}. Using this relation
and the conditions in Eq. (4.3}, we have the variance of 3, as

VAR(E, ) = D* S) T sin® Gar(n—i+1) (4.4)
i=1

Since variance is the square of standard deviation, the standard deviation of the cumulative

£rTors is

- , 71 gin whin cos mht i

5} - f{}| 5(} .x/“**" SN L iw . ~E_£} (f?+ ) {45}
2 2 sin wht

in which the expression under the square root is the summation of the sine square functons in

Eg. {44}

Since €,,, is 2 sum of » terms as shown in Eq. (4.1), and we are ally interested in 5
being very large, £,,; can be tessonably considered as & normally disive ed random variable
according to the central limit theorem, For a2 normally distributed randon wriable, over 23% of
its values will be within two standard deviations from the mean. There . we can safely esti-

mate the upper cumulative error bound as

e, < 8, 7 (4.6a)
where
J ) EE’E X/i__@_ _ sin wArm &?;{}chjjﬁf(u"f-i"};} (4.6b)
Z 7 osin whi

Fig. 4.1 shows the values of J with respect to # at various wA7 values. These are the max-
imum magnitudes of cumulative errors expecied due to 2 unit standard deviation of random
errors. The fgure indicates that as whs increases, the rate of error growth with respect to 4

also increases. This rate tends to diminish as » becomnes larger. To obtain more meaningful
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information, we have to identify the influence of integration step size, A/, in error propagation,
while @ is constant. Consider, for example, points A and B on the curves which have wAs
equal to 1 and 0.5, respectively, in Fig. 4.1, Assuming that w and ¢, which is the total time of
analysis, are constant, we have At /Aty = 2, and ¢t = 500 Az, or 1000 Azg. If we go from A to0
B, the maximum cumulative error at time ¢, |& |, is reduced by approximately 40%. There-

fore, cutting the size of time step is an efficient way to improve accuracy.

More generally, we can show that cumulative errors can always be reduced by decreasing
integration step size, At, and that the error bound will approach zero in the limit as A7 goes to

zero. Letting @ and ¢ be constant as before, and substituting ¢/Ar for »# in Eq. (4.6), we have

_ 1/2
1€41 ] max w’ t At sin w? cos wl{r+Ar)
= - 4.7
Szi Bl 8§—2 LUZ Atz 4 _ )
2 |—— — 1] sin wAt
w” At
If Ar is small, we can obtain from this equation that
12,41 lmax = O (A1) (4.8)

This implies that both |8, 4|, and Az will approach zero simultaneously.

4,2.3, Example

To check the error-bound estimate in Eq. (4.6), we do a numerical simulation which is
similar to the examples in Sec. 3.6. Instead of using truncation, we use rounding-off in the A/D
conversion of displacement control signals, such that all the control errors will be random. The
resulis of this simulation are displayed in Fig. 4.2. Fig. 4.2a shows the errors e measured dur-
ing the simulation. These errors are equal to e!¥ as before. Fig. 4.2b shows the Fourier spec-
trum of the errors. The randomness of the error signals is illustrated by the approximately uni-
form frequency contributions in the spectrum. These errors have a standard deviation of

0.1202 x 1072 in., and a mean of 0.2581 x 10~* in. Therefore, our zero mean assumption is
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valid. Finally, Fig. 4.2¢ shows the curmulative errors computed by Eq. (4.1) as well as the error

bounds estimated by means of Fq. (4.6). The error-bound estimation is conservative,
4.3, Systematic Errors

4.3.1. Sinusocidal Errees

From Sec. 2.2, we can observe that systematic errors e/ tend to gscillate at the response
frequency of a structure in pseudodynamic testing. A resonance effect can be excited by this
tvpe of errors. To investigate the systematic error effect, we assume that errors ¢/ can be

represenied by a simple sinuscidal function:

ef'= A, sin @Al (4.9}

in which @ is any arbitrary frequency. By substituting this error form into Eg (4.1}, the cumu.

fative errors become

€01 =A, D ¥ sin GABi sin @i(n—i+1) {410}
jems ]

in which 8 = @&/w. By means of trigonometric transformations, Eq. (4.10) can be written as

sin —iwﬁm(lﬁ%ﬁ)n cos _léa?s&t(lwﬁ}{n-ﬂ)
2 2 o
b (411}
sin %Z&Ai(i%—ﬁ’)

Epyy =

A,

i

1
2

sin %amu—m cos %muummm

sin +5a1(1-4)
This equation can be simplified into the form:

e 1 A. D I=ysin GArin+1) + p sin oA {n+114] (4.12a)

a+ | = 2
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in which

Sin 475 (4.12b)
cos wAif — cos wht

sin wAt
cos wAif — cos wAt

p=

This equation is similar to a numerical solution of an undamped displacement response of a
structural system subjected to a sinusoidal excitation. As 8 approaches 1, both y and p will go

to infinity. This is the resonance phenomenon.

4.3.2. Rescenance Effect and Error Bound

To formulate the resonance phenomenon, we substitute 8 = 1 into Eq. (4.11) and get

Z,.1=— A, R sin (@Atm—a¢) (4.13a)

where

R=1ip|\fri+2n+ o (4.13b)

nA

%—i—nﬁ‘

¢ = arctan

This is the equation of resonance response due to sinusocidal errors. Without damping, the
cumulative errors can grow infinitely as » increases. It is, therefore, the maximum error-

propagation effect which systematic errors can induce.

The resonance effect is not merely an idealistic conception. The response of a structure
under earthquake excitations is, very often, dominated by its own natura!l frequency. Therefore,
systematic errors always tend to have a frequency equal to @. In addition, the natural fre-

quency of a structure can be excited by the systematic errors themselves, even though when
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the structure is not vibrating at that frequency. This is explained in the next section. For these
reasons, we can expect the resonance effect to occur whenever inpuf errors are systematic.
Consequently. a reliable cumulative error bound can be obtained from Eq. (4.13) for systematic

CITOrs!

l6,.:1 € 4, R (4.14)

In Fig. 4.3, the factor R is plotted against » at different wAr values. The curves are
almost straight lines. We can also observe that the rate of cumulative error increase is more
significant here than in the random error case (ie. R >> J). In addition, from Eqs. (4.13b)
and (4.14}, we find that

_-———-———l?";‘(,"““ = % Vol P+ 1+ 0640 (4.1%)
This error convergence eguation is obtained in a similar way as Eg. (2.8), However, Eq. (4.15)
shows that the cumulative errors due to systematic errors cannot be completely eliminated by
reducing Ar. The cumulative error bound will approach a lower limit of 4, Ve~ 17+ 1/ 2 as
At becomes very small. Furthermore, reducing At cannot significantly improve the accuracy of
a test result, because the O{Ar) term is small when compared with the square root term in Eq,
(4.15). In other words, As has a negligible influence on the total cumulative errors. We can
illustrate that by moving from point A to point B in Fig. 4.3, assuming « and ¢ constant. In
doing that, the cumulative errors are reduced by approximately 10% only, while a2 40% reduc-
tion is achieved for random errors. This explains the observations from the numerical simula-

tions in Sec. 3.6, Therfore, systematic errors are highly undesirable.
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4.4, General Errors of Mixed Form

4.4.1. Fourier Transformation

In the previous discussions, we assume that errors are either random or of simple har-
monic waveform. However, errors in an actual test are not that idealistic. They may consist of
many different freguency contributions, such as the naturai frequency of a structure and the
frequencies of excitations. In addition, since systematic errors are always mixed with random
errors, the systematic nature of real error signals may not be readily recognizable. In MDOF

systems, the error signals can be even more complicated,

Despite this complexily, resonance phenomenon always dominates error propagation as
iong as systematic errors exist, To illustrate this fact, we will look at the problem from a more
general view point. Errors of any form can be represented by a Fourier series. Since each term
of a Fourier series is a simple harmonic function, the total cumulative errors in a test are the
sum of ali the simple harmonic contributions. The equations developed in the previous section

for a sinusoidal error form can be individually applied to each of these terms.

We can re-write Eq. {4.12a), which is derived for sinusoida! errors, in the form as

&,o) = — Ao H sin (@At (n+1)p—8) (4.16a)
where
H=—;—§D§\/p2+.y2-—2pycos¢c
§ = arctan ——M] (4.16b)
p -~y Cos g

d=wAt (n+1)(1~-8)

The parameters y and p are defined in Eq. (4.12b). H is the amplification factor of the cumu-
lative errors and it is a function of wAr, 8, and n. In Fig. 4.4, H is plotted against »n with
different 8 values for an arbitrary case of wAr = 0.30. We can see that & is an oscillatory Tunc-

tion of n, and that its period and amplitude increase with increasing 8. As B approaches 1, H
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tends to have infinitely large period and amplitude. 1t becomes the error amplification factor in
the resonance phenomenon, ie. the factor R in Eq. (4.13b). Fig. 4.4 also suggests that when
the number of integration steps is large, only those sinusoidal errors with 8 close to unity are
significant. The relative significance of other frequency componentis dies out fast in error pro-
pagation, when compared to that of resonance frequency.

To study the general error-propagation problem in terms of a Fourier series, we consider a

complex error function:

. —_ P iwdif,
el = cos whif,m + i sin AiB;m=r¢ By (4.17)

where 8, = @,/w and / = v/—1. From Eq. (4.16), the cumuiative errors corresponding to the

complex error function in the above equation are

—_ (A8 (n+1)—4)
Eyp =~ H, R (4.18)

in which #; and 8, are the values of H and 6 in Eq. (4.16) when g is equal to 3.

As a matter of fact, by discrete Fourier transformation, any sequence of error signals con-
sisting of M points, e}/, e},.....and e}y_,, can be interpolated by a trigonometric exponential

polynormial [14,15]:

k+v

el = T ¢ elAmAm {4.193)
J=—k
in which
v=0 |, k=~M¥2:~1— if M is odd
v=1 |, k=—A%~ if M is even (4.19b)
Ae = 2
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and ¢;’s are the Fourier coefficients which can be computed by

M1
z e;‘ff g—-ui\.w.lw (419{2}

m==f)

1
Cj"""’ﬁ

Applying the results of Eqs. (4.17) and (4.18) into Eq. (4.19), we can express the cumulative

errors by the series:

k4w -

—_ HENRTE RS

o =— 9 Hicoe J 1 (4.20)
f=—k

where B8, = jAw/®. Since e/ s are real, ¢; and c.; must be complex conjugates. Conse-

guently, assuming that M is odd, we can re-write Eqgs. (4.19) and (4.20) as

k
el =rco+ 273 le;|sin @AIB; m+,) (4.21)
=1

4

and
I A
Ep =D e 3 sinwAt(n—j+1) =2 3 H, |¢| sin @Ar(n+DB,—0,+¢,)  (4.22)
g =1
where o, = arctan (—Rele,1/imlc]). Eq. (4.21) shows that any experimental errors can be

represented as the sum of a series of sinusoidal functions and a constant. Consequently, cumu-
lative errors can be represented by & trigonometric series as well, as shown by Eq. (4.22). The
fitst term on the right hand side of Eq. {4.22) is simply the cumulative errors due o a constant
error ¢p. It is negligible in most circumstances as discussed in Sec. 4.2.1. From Eq. (421}, we
can interpret that 2 || is the amplitude of each contributing sinusoidal error compenent which
has a frequency of jAw. According to Fig. 4.4, most of the frequency components have negligi-
ble influences on error propagation. By neglecting these components, we can appreximate the

cumulative errors as

€ = — 23 H, lc,| sin (@Ar(n+1)B,—8,+¢,) {4.23)
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in which we only include those frequency components that have 8;’s close to unity. If the
input errors are dominated by the frequency w, then the {q,—l’s should be larger in the neighbor-

hood of w. In that case, only a few frequencies need to be considered in Eq. (4.23).

4.4.2. Implications of Fourler Spectrum

We can now generalize the error-propagation characteristics previously chserved. By
means of Fourier transformation, any errors can be represented by a series of trigonometric
functions. For completely random errors, the magnitudes of these functions, [c,]’s, are approxi-
mately uniform in the frequency spectrum (see Fig. 4.2). In addition, the [c,|’s are relatively
small when compared to the actual magnitude of the errors. Due to this fact, the resulting
cumulative errors will be smali, according to Eq. (4.23). We can also observe that cumulative
errors will be dominated by the natural frequency @, because the amplification factors H; near

that frequency are relatively large. This is consistent with our observations in Sec. 4.2.

However, in the presence of systematic errors, a large narrow spike will appear at @ in an
error spectrum. This means that both the [c,-l’s and H;’s are large when the 8;"s are close to 1.
As a result, the cumulative errors due to systematic errors will be much larger than those due
to random errors, according to Eq. (4.23). Since the spike is narrow, Eq. (4.23} will approxi-

mately give the same error bound as Eq. (4.13), by taking A, = 2 ¥ |¢;] and H, = R. The
-

existence of this narrow spike in an error spectrum can be explained as follows. Due to the
resonance phenomenon, Eq. {4.23) represents a filter-like action which amplifies those frequen-
cies near w and suppresses the other frequencies. As a resulf, cumulative errors tend to be
dominated by the natural freguency @. These cumulative errors will, in turn, enhance the
natural frequency int s structural response whether the response is dominated by that frequency
or not. Since systematic errors tend to follow the structural response frequency, their fre-
guency content will be enhanced with @ as well. Through that interaction, systematic errors
always tend to be dominated by the frequency @. Therefore, resonance is usually the predom-

inant effect in error propagation, as long as sytematic errors exist. This implies that the error
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bound in Bq. (4.14), which assumes resonance condition, is realistic.

4.4.3. Examples

To iltustrate the above discussions, we use the same pumerical example as in Sec. 4.2.3.
In this case, truncation is used in the A/D conversion of displacement signals to produce sys-
tematic errors. The structural system has an angular freguency w of 18.91 sec ~! By using At of
0.02 sec, the corresponding numerical frequency, @, becomes 19.02 sec —1 according to Eaq.
(3.20b). Since the maximum displacement calibrated for is 5 in. and a 12-bit progammabie

D/ A converter is used, the maxitnum truncation error expected will be 6.0024 in.

The results of the simulation are shown in Fig. 4.5. From Fig. 4.3a, we abserve that the
measured errors, e/ are random, but with a systematic oscillatory trend. A spectral analysis is
performed on these error signals, and the frequency spectrum is shown in Fig. 4.5b. The verti-
cal axis of the spectrum represents the error amplitude, 2 icji, of each frequency component.
Pue to systematic truncations, a relatively large spike can be observed in the spectrum at fre-
guency w. Fig. 4.5c shows the resulting cumulative errors. They are significantly larger than
those in Fig. 4.2 (by more than 10 times). The error bounds computed by means of Eq. {(4.23}
are also shown in Fig. 4.5¢c. They are very close to the actual error amplitudes. The error-
bound computation, as shown in Table 4.1, uses only the iwo major frequency components
indicated in Fig. 4.5h.

Iri another example, At of 0.01 sec is used instead. The numerical frequency @ becomes
18.94 sec L. The results are shown in Fig. 4.6. They are similar to those of the previous exam-
ple. By comparing Fig. 4.5 with Fig. 4.6, we can see that reducing At has no obvious effect on

error propagation at all. This is consistent with our error convergence equation {(Eq. (4.15)).

In the above examples, due to the dominance of resonance phenomenon in error propaga-
tion, the error bounds can also be estimated by means of Eq. {4.14). Since the magnitudes of
the above truncation errors are within the range of 0 to 0.0024 in., we can take the mean value

of 0.0012 in. as the error amplitude A,. Substituting this value into Eq. (4.14), we obtain the
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cumulative error bound for each case. They are also plotted in Figs. 4.5¢ and 4.6¢c, respectively.

These error estimates are as satisfactory as those based on Fourier spectrum,

4.5, Concluding Remarks

From the above studies, we can see that systernatic errors are significantly worse than ran-
dom errors in error propagation. The cumulative error bounds resulting from systematic errors
are comparatively large and they cannot be reduced by decreasing Atr. In the case of random
errors, cumulative errors are small and they will diminish as Ar goes to 0. The observations in
this chapter can also be correlated with the energy effects of systematic errors observed in Sec.
2.2. The dynamic response of a structurer is very sepsifive to energy changes. If systematic
errors of the energy-addition type exist, the response of a structure can grow without limit as
resonance phenomenon. On the other hand, if input errors are energy dissipating, the response
will be rapidly damped as if the structural system had a very high viscous damping. Therefore,
systernatic errors should be minimized by all means in pseudodynamic tests, such as replacing
truncation by rounding-off in the A/D conversions of displacement and restoring foree signals.

As will be shown later, the energy adding errors are highly disastrous in MDOF testing.

Consequently, special precautions should be paid to the error sources discussed in Sec.
2.2, so that they will not detrimentally affect test results. In general, by knowing e and A7, we
can obtain cumulative error bounds using Eq. (4.6) or (4.14). From these, the tolerance limits
of various errors can be set to ensure satisfactory test results; and the reliability of pseudo-

dynamic testing can be assessed.
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CHAPTER §

ERROR PROPAGATION CHARACTERISTICS
IN MDOF LINEAR ELASTIC SYSTEMS

5.1, Cumulative Errors in MPOTF Systems

As the number of structural degrees of freedom increases, more experimental errors are
introduced into a pseudodynamic test. It is because control and measurement errors exist at
each additional degree of freedom. Furthermore, the restoring force developed at each degree
of freedomn of a structure is influenced by displacement-control errors at all the others. This
coupling effect can be observed from the off-diagonal elements of a stiffness matrix. The larger
the ofi-diagonal elements are, the greater will be the extent of couplings. In addition, since the
rate of error propagation is proportional to the wA¢ value, the higher frequencies of a MDOF
system will induce more significant cumulative errors. All these considerations lead to the con-
clusion that the error-propagation problem is more serious in MDOF systems than in the previ-
ous SDOF case. In this chapter, we will investigate the MDOF problem from a numerical point
of view, using the results developed in Chapters 3 and 4 for SDOF systems, To do that, we
first develop the error-propagation equation in MDOF systems by means of modal superposi-

tion.

5.1.1. Modal Superposition Metheod

Modal superposition is a useful technique for MDOF analysis. It wiil be briefly reviewed

here so that it can be applied to the error-propagation studies.

In a MDOF system, the equations of dynamic equilibrium at 7 = / Ar can be represented

by the matrix equation:

ma, +ev, +r =f (5.1

where m and ¢ are the mass and damping matrices of the system; and a,, v,, and r, are the

acceleration, velocity, and restoring force vectors due to the external excitation f,. In linear
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elastic systems, the restoring force can be expressed as

r,=kd, (5.2)

in which k is the elastic stiffness matrix, and d, is the displacement vector. From the above
structural properties, we can define the eigenvector &, as any vector which satisfies
k¢, =w’ m &,,, where o/, is the corresponding eigenvalue. The ¢,,’s and w,,’s can be phy-
sically interpreted as the undamped free-vibration mode shapes and frequencies of a MDOF
structural system. For a N-degree-of-freedom system, we can always have a set of N linearly

independent eigenvectors which satisfy the following orthogonality conditions [16};
¢/ me¢,=0 {5.3a)

¢k, =0 (5.3b)

for m # n. In addition, with proper assumptions on the damping matrix ¢, the eigenvectors

can also be orthogonal with respect to damping:

qbnfr- < ¢n = ) (53(_‘)

From the above orthogonality conditions, the eigenvectors are linearly independent.

Therefore, we can express system responses as linear combinations of the eigenvectors:

N

dﬂ' i 2 ¢m -Dmi (54’3)
jroes }
N .

¥, = 2 ¢m DHH (54b)
m=1
N ..

a, = Z ¢’m Dm: (54C)

=i

By substituting these expressions into Eq. {5.1), and using the conditions in Eq. (5.3}, we can

obtain a system of N uncoupled eqguations of motion:
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for m =1, 2,......N. These are the modal equilibrium equations, and D, is the modal displace-

ment response in the generalized coordinates. Correspondingly, K, M, and C,, are the gen-

eralized stiffness, mass, and damping, which can be obtained by

Ki?? = ¢i‘)]: k ¢l)l
MH? = ¢:“;’; m ¢H’J (5.6)
CHI b ¢4'f?— < ¢n‘??

Similarly, the modal restoring force and excitation are represented by

Rlﬂ! = ¢n?)— rr‘ = KH! DHH (5-7)

F;)El = ¢.‘P]? f!

From Eq. (5.6}, and the definition of the eigenvectors and eigenvalues, we know that w,, is
equal to (K,,,/M,,F)"’ ’, which is the frequency of the vibration mode m. Consequently, a N-
degree-of-freedom system has & vibration modes with frequencies: w,, ®y,....., and w,. Furth-
ermore, according to Eq. (5.4}, the dynamic responses of a N-degree-of-freedom system are
linear combinations of the N uncoupled modal responses, which are governed by Eq. (5.3},
The step-by-step numerical integration, which is used to solve Eq. (5.1) in a pseudodynamic
test, can be similarly applied to Eq. (5.5) for each individual mode. Therefore, instead of direct
numerical computation, the solution of Eq. (5.1) can be equivalently obtained by superimpos-

ing the individual modal solutions.



- 53-

§.1.2. Cumulative Ervors by Mods! Superposition

Using the modal superposition method, error-propagation behavior in MDOF systems can
be formulated from the results of SDOF systems. Similar to system responses, the total cumu-
lative errors in MDOF sytems can be considered as a linear combination of all the modal cumu-
lative errors. Consequently, the error-propagation problem here is equivalent to a set of uncou-

pled SDOF cases,

In MDOF systems, the displacement- and force-feedback errors can be represented by
error vectors e and &/, respectively. Similar to Eq. (3.6}, we can also define the equivalent dis-
placement error ¢/ as k™' e/. To use the modal superposition approach, we must first express
these errors in their corresponding modal forms. According to the development in the previous

section, the modal errors can be obtained by the following transformations:

i

Ed —_ T o )
i Mm ‘f’m moe; (5 Sa)
Epi = b ! (5.8b)

EI;[{ = K,;l -E;;u‘ (58(:)

rid

where E¢, £, and E!¢ are the corresponding modal forms of e, e/, and ¢/, respectively. By
substituting £ for ¢/ in Eq. (4.1}, we obtain the cumulative error equation for each individual

mode as

Em (n+t) ™ Dm E Eﬂ(;; sin anrﬁ‘f("?_’i—*—}) (59)
r=1

in which D, and &,, are the values of D and @ when w is equal to w,, in Eq. (3.31). Accord-

ing to Eq. {5.4a), the total cumulaiive errors in the geometric coordinates can be cbtained by

N
En+i = E é’m Em {n+1) (510)

R
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By substituting Eq. (5.9) into Eq. (5.10}, and using the results of FEgs. (5.8b) and (5.8¢), we

have
N "
€, = Z D, F, 2 e/’ sin w,At{n—i+1) {5.1l1a)
ppi= | =1
in which
-
i b k
F, = 31;—"’_— (5.11b)
¢H? k ¢Hi

This is the equation of cumulative displacement errors in MDGOF systems. It is similar to Eq.
(4.1}, except that the cumulative error vector here is a linear combination of all the modal con-
tributions. By means of Eq. (5.11), we can study the general error-propagation characteristics

in MDOF testing.

5.2. Random Errors

5.2.1. Preliminary Considerations

To study the propagation of random errors in MDOF testing, a siatistical approach similar
to that in Sec. 4.2.7 is used. The statistical properties of the errors e/“ are similar to those of
the SDOF case, although some additional assumptions are required to simplify the problem.
The errors have a zero mean at each degree of freedom, and a uniform standard deviation of
S.. In addition, we assume that the errors at each degree of freedom are completely uncorre-
lated to one another, and to those at any other degrees of freedom. These properties can be

mathematically expressed as
E(e/ =0

E(e"ﬂf efd T) =0 (512)
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Ele/e/* ) = 8§21

for i # j. In the above equations, 0 is a zero vector or matrix, and I is an tdentity matrix.

For simplicity, we also assume that the structural system considered has a uniform mass

distribution:

m= 1 (5.13)

where 7 is the mass fumped at each degree of freedom. Furthermore, the eigenvectors of the

system are normalized such that

$,) b, =1 (5.14)

form=1,2,..N.

With these assumptions, the cumulative error bound at each degree of freedom can be
individually estimated using the same statistical criterion as before, i.e. the magnitude of cumu-
lative errors is most probably within twice their standard deviation from the mean. The variance
and the standard deviation of cumulative errors at each degree of freedom can be obtained
from Eq. (5.11). To assist matrix operations, we define the following vector notations. For any

arbitrary vector x, which is {x;, x,,...., x,,}7, we define

kP ={xf, x#,...., x3}7 {(5.15)

le,...., |me}T'

x| = {lx,

)
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5.2.2. Statistical Errer Bounds

From Eq. (5.11), we have the product of the cumuiative error vector and its transpose as

) N N . . . N
Eﬂ:+} Enr{Ll = z, Z -Dm Dp Fm (516)
X e el Tsin &, At(n—i+1) sin @, Ar{n—j+1)| F/

By applving the statistical properties described in Eq. (5.12), we can obtain from Eq. (5.16} a
matrix average:

. N N N
E@. 8 0)=53% S b,D, F, F/ Y sin@,Ar{n—i+1) sin @,Ar(n—i+1) (5.17)

m=1 p=1 fa

The above equation can be further simplified to

- N . PR _ N

E(wéu-i—i Eni-?—l) = St‘z 2 ¢’m d’n]; Dnj z Sinz wmA[(n_‘;'i-l) (518}
m=1 j=1 .

by means of the orihogona]ity conditions in Eq. (5.3), and the simpifying assumptions in Egs.

{5.13) and (5.14). The diagonal elements of the matrix E(§,,, e/ ;) are the variances of

cumnulative errors at varicus degrees of freedom of a structure. Using the notations defined in

Eq. (5.15), we can store the variances in a vector {S;}%. Consequently, according to Eq. (5.18),

we have

e

N Il

S. =39, 3 {$.,1°D; 3 sin’ @, Ar{n—i+1) (5.19)
m=1 7=}

where each element of 8 represents the standard deviation of cumulative errors at each degree

of freedom. Finailly, by finding the summation of the sine square functions in the above equa-

tion as in Eq. (4.5), and applying the statistical error bound criterion, we have cumulative error

bounds as
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] < S, (5.20a)

where

2 . (5.20b)
2 8in o, At

£.2.3. Ymplications of the Hrror Beunds

i3

Eq. (520} is similar 1o Eq. (4.6), which is derived for SOV systems, except that it ha
multiple modal contributions. Since Ba. (5.200) is exacily ientical to Bg. (4.6%), the values of
4, at various m can be obtained from Flg. 4.1 by taking o = o, From Ba {520}, we can
observe that the cumulative error bound at each degree of freedom ig & root-sum-square combi-
nation of all the participating modes, The amount of cumulative errors coniributed by each
mode depends on the factor J, and elgenvecior ¢, In Fig. 4.1, the magnitnde of J, increases
rapidly as e, A7 increases. Therefore, the higher the modal frequency s, the greater will be the
comtribution to error propagation. On the other hand, the digsplacement response of 3 structurs
is ugually dominated by iis fundamental {requency. Due to these facts, cumulative errors can
usually be identified as high freguency noises in MDOF pseudodynamic responses. This is a
highly undesirable phenomenon., According o variation of mode shapes ¢, the higher fre-
auency modes may be more significarnt than the fundamental mode st some degrees of freedom
of a structure. At these degrees of freedom, the high frequency noises may totally overwhelm
the relatively small fundamental frequency responses with large error-amplification factors J,,.
For example, we can consider 2 cantilever structwre, where displacement responses are rela-
tively small at the lower siories, due o the dominance of the fundamenizl mode shape. I that
case, the lower-story responses can be easily wiped out by some high frequency errors, There-
fore, the existence of high frequency components is the major Hmitation to MDOF testing. In

general, the larger the number of degrees of freedom is, the more likely will be the existence of
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high frequency components.

The above observations warn against the idea that the higher-mode effects can be
neglected in pseudodynamic tests, as long as the stability requirement of the integration algo-
rithm is satisfied. This conception is generally valid in pure analytical problems, where the
rounding-off errors introduced by f{loating-point computations in a digital computer are
extremely small. In that sifuation, the approximation errors introduced by numerical integration
are more significant. The adverse effect of the numerical errors on the higher modes is usually
negligible, if the numerical method is stable and the higher mode participations are small.
However, in pseudodynamic testing, experimental errors are usually so large that the higher

mode excitation becomes the predominant factor in accuracy considerations,

5.3, Influence of Structural Characteristics on Error Propagation

To illustrate the cumulative effects of random errors in MDOF systems, and to see how it
is related to structural characteristics, we will look at two different six-degree-of-freedom struc-
tural systems. One is designed to have a more coupled stiffness matrix than the other. Using

the resulis in the previous section, we can investigate the problems guantitatively,

5.3.1. K-Braced Steel Frame

A K-braced steel frame, shown in Fig. 5.1a, is first considered here. It is a complete bay
of a six-story steel structure preliminarily proposed for pseudodynamic testing in the 11.8.-Japan
Cooperative Research Program. The horizontal and vertical members of the frame are assumed
to be relatively rigid in axial deformation. As a result, the frame has a total of thirty degrees of
freedom, as shown in Fig. 5.1b. Mass is lumped at each story level. Assuming that the structure
is subjected to a horizontal base excitation, we will enly consider the six lateral degrees of free-

dom of the frame in a pseudodynamic test.

With the member sizes shown in Fig. 5.1a, the 30 x 30 stiffness matrix of the frame is

frst assembled using the direct stiffness methoed. It is subsequently reduced to a 6 X 6 matrix,
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for the six lateral degrees of freedom, by means of static condensation. All compulations are
carried out with the aid of a computer program [17]. The resuiting stiffness matrix is shown in
Table 5.1. The off-diagonal terms of the stiffness matrix are significantly smaller than the diago-
nal ones. Therefore, only a very limited degree of couplings exists between the story displace-

ments and restoring forces on different levels.

A unit mass is lumped at each story, such that m = I. By solving the eigenvalue prob-
lem, we obtain all the participating frequencies and mode shapes of the siructure. They are
listed in Tables 5.2 and 5.3, respectively. An integration time step A7 of 0.06] sec is used. As g
result, @A is 0.078, which is small enough to obtain an accurate nurmerical result; and eght iz
within the stability iimit. These are ideal conditions from an analylical viewpeint. To consider the
cumulative error growth during pseudodynamic testing, the values of |, 4| ave evaluaied at
n o= 2000 (ie. 7= 20 sec) for all the participitating modes. They are listad in Table 5.4, By
means of Bg. (5.20), the root-sum-square curnulative error effect is computed and shown in the
last coluran of the table. From this table, we can see that the higher frequencies have greater
contributions to errof propagation, end thai the largest cumulative errors will occur at the two
bottom stories, which have error bounds approximately sgual to 338, For an equivalent SDOF
systemn which has ef? equal to 0.078, the maximum possible error is 495, Compared with

this, the six-degree-of-freedom systemn has a maximum potential error of more than six fimes.

£.3.2, Reinforced Concrete Shear-Wall SBtructure

The second example is a six-story reinforced concrele structure with a shear wall, as
shown in Fig.5.2. It is similar in design to a seven-story structure {6] which was tested at BRI in
Japan. However, as in the case with the steel frame, only the six lateral degrees of freedom are
considered here. The stiffness matrix of the six-story structure, shown in Tabie 5.3, is obtained
by fixing the lateral displacement at the bottom story of the seven-story siructure, the stiffness
of which was experimentally measured at BRI, From Table 5.5, we can observe that the off-

diagonal elements of the stiffness matrix are relatively large. This means that the resiaring foree
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developed at each story is significantly influenced by the displacements at the other stories.
The systemn is, therefore, highly coupled. The mass selected for each story is taken as 3.9 kip
sec’/in, so that the fundamental frequency of this structure will be identical with that of the

steel frame discussed previously,

The frequencies and mode shapes obtained from the structure are shown in Tables 5.6
and 5.7, respectively. The highest frequency of the structure is about 40 times the fundamental
frequency. To achieve numerical stability, integration time step A7 of 0.005 sec is selected. As
a result, w41 is 0.039, which is half of the value for the previous frame; whereas, wyAr is
1.561, which is close to the stability limit. Again, this is adequate for anatytical purpose. For
error-propagation studies, the values of I, J, | at n = 4000 (ie. 1t = 20 sec) are listed in
Table 5.8. The root-sum-square effect is shown in the last column of the table. By comparing
these results with Table 5.4, we can observe that the cumulative error bounds here are
significantly larger than those in the steel frame. This is because of the greater higher-mode fre-
guencies of the shear-wall frame. In this case, the maximum error can be 1595,. This means
that if displacement-contrel errors have a standard deviation of 0.1% of the maximum structural
displacement, the resulting cumulative errors can be as large as 16%. Therefore, the struclure

is extremely sensitive to experimental errors.

5.3.3. Comparisons and Comments

Due to the existence of high frequency components, the cumulative errors in the above
structural systems are more significant than those in a SDOF system. By comparing the two
structural examples, we observe that the highly coupled svstem experiences a more severe

error-propagation problem because of its wider frequency span.

In the above discussions, idealized mass distribution and error properties are assumed.
However, the basic phenomena observed are valid for more general conditions. For example,
since error propagation depends on the frequency composition of a structure, a variation of

mass distribution can affect the rate of cumulative error growth. In the cases where mass



<61 -

distributions are not uniform and errors vary among the degrees of freedom, an accuraie error-
propagation behavior can be modelled by means of direct simulation using Eq. (5.11). In any
case, to achieve the best pseudodynamic result, errors at all degrees of freedom of a system
should be minimized. According to Eq. (5.11), errors at any degree of freedom can affect the

overall reliability of test resuiis.

5.4. Systematic Errors

As observed in SDOF sysiems, systematic errors tend 1o ascillate at the naturs! TEQUEnCY
of & structure. However, a MDOF system has numerous frequency components. To investigate
this problem from a more general aspect, we express the errors e/ in terms of a trigonometric
exponential series by Fourier transformation, as in Sec. 4.4, This series is identical to the one in
Eq. (4.19), which is for SDOF systems, except that the Forurier coefficients are now in a vector

form, i.e.

K+
@.[M: E e-jegji!m;l;f (5218)
=k
in which the Fourier coefficient vectors are
M1
i ] N
Cj‘ st z de e-—{};‘\cuAri {5215}
M =

By substituting Eq. (5.21a) into Eq. (5.11), and expressing the cumulative errors due to each

frequency component in terms of Eq. (4.18), we have

— o LR G AR =0, )
€nir ™ z Fm X }{.,‘m ¢, € R ! (5.22)
mi=1 Jea—k
in which 8, is equal i0o jAw/e,,; and H,, and 8, are the values of H and 8 defined by Eq.

(4.16b}, corresponding to the vibration mode m and excitation frequency jhw. Eq. (5.22) is

clearly analogous to Eq. (4.20), the cumulative error equation for SDOF systems, except that it
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is a linear combination of all the modal cumulative errors. Therefore, the development here is
parailel to that of Sec. 4.4. By fransforming the exponential series in Ea. (5.22) inio an
appropriate sinusoidal series, as in Eg. (4.22), and knowing that the error signals are dominated
by the natural frequencies, we can approximate the cumulative errors as
N )
€, = 2 ¥, A, R, sin (o, atn+L,,) {5.23)
=1

in which R,, s the error-amplification factor defined by Eq. {(4.13) for mode m; {,, is a phase

shift which depends on the modal frequency and the phase differences of input errors; and

A, = 2% le;|, where the j’s are those for which the 8,,"s are close to unity. This is reason-
5

able because the H,,’s approach the R,,’s, and the sine functions overlap one another as the

B, ’s go to 1. The values of R, at various w, Ar can be obtained from Fig. 4.3.

From Eq. (5.23), the cumulative error bounds can be conservatively estimated as

ool € 2 1B A Rl (5.29)
e

This may be an over-conservative estimation because all the peak errors usually do not occur
simultanecusly. However, when the natural frequencies of a structure cluster together, the sine
functions in Eqg. (5.23) will be only slightly off-phased. In that case, Eq. (5.24) gives a good
estimate of the maximum cumulative errors. On the other hand, if the frequencies are wide
apart, the R,.’s will be much greater for the higher frequencies, according to Fig. 4.3. Under
that condition, two possible cases exist. First, if the errors are energy dissipating, then the
higher frequency maodes, which have low participations in the actual vibration response, will be
readily damped out, without significant adverse effects on the overall accuracy. Consequently,
only a few lower frequency modes need to be considered in Eq. (4.24). The inclusion of the
higher frequency effects wiil be over-conservative. Second, if the errors are of the energy-
addition type, then the high frequency components will dominate error propagation because of

the large R,,’s. In that case, Eq. (5.24) is satisfactory because the lower frequencies have
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negligible influences here. Therefore, energy-adding systematic errors are highly undesirabie.
As in the random error situation, the accuracy of test results is severely limited by the higher
frequencies present in the system. Furthermore, when errors are systematic, error propagation

canpot be suppressed by reducing At

5.5, Numerical Simulations

To illustrate the previous discussions, simulations similar to those in the SDOF case are
performed. The structural mode! used here has two degrees of freedom with mass lumped at
each story level, The sysiem properiies are shown in Fig. 5.3a. Tt has a fundamental fre-
quency, w,, of 10.90 sec™!, and a second mode frequency, w-, of 72.54 sec™!. This wide fre-
quency gap provides an appropriate example to illustrate potential error-propagation problems in
MDOF systems. With A: equal to 0.02 sec, the corresponding numerical frequencies, @, and
@;, are 10.92 and 81.16 sec™’, respectively. The value of @ & is 0.218, which is sufficiently
small {o compute an accurate first mode response; while w,Ar is within the stability limit. Using
this integration step, the structural response to the El Ceniro 1940 (NS}, 0.02g excitation is
obiained. The displacement histories of both degrees of freedom are shown in Fig. 5.3b. They
are the exact numerical solutions without experimémai errors. The time histories indicate that
the response is dominated by the fundamental frequency. Consequently, the As chosen is ade-
guate for this analytical purpose, where the numerical accuracy of the higher mode response is

not important.

In the simulations here, a 12-bit programmable D/A converter is used to transfer dis-
placement control signals. Displacement is calibrated to a 5 in. range for each degree of free-
dom. However, the actual displacements shown in Fig. 5.3 will never exceed .5 in. This will
produce relatively significant A/D conversion errors.

In the first simulation, rounding-off is used in the A/D conversion, such that displace-

ment control errors generated are totally random in nature. They are shown in Fig. 54, The

resulting displacement response and cumulative errors are displayed in Fig. 5.5. The cumulative
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errors are extremely noisy. We can see that the second mode has a significant contribution to
the cumulative errors because of the relatively large J; factor. The cumulative errors at the
second degree of freedomn are larger than those at the first, although the actual displacement
response at the latter is smaller. This is attributed to the variation of mode shapes, as discussed
in Sec. 5.2.3. Using the measured standard deviation S, of 0.00161 in., we can compute the
error bounds by means of Eq. (5.20). The computed values are close to the actual cumulative
error amplitudes, as shown in Fig. 5.5b. By comparing these results with those of the SDOF
simulation in Fig. 4.2, we can observe the increased cumulative error growth i this two-

degree-of-freedom system.

In the second simulation, truncation is used instead of rounding-off. As a result, sys-
tematic errors of the energy-addition tvpe are generated. These signals, together with their
Fourier spectra, are shown in Fig. 5.6. From the Fourier spectra, it is clear that the second
mode freguency dominates the error signals. This is because the second mode effect in the
cumulative errors grows so rapidly that it overwhelms the first mode displacement response,
and arouses the resopance effect. This second mode excitation induces a severe error-
propagation problem as shown in Fig. 5.7a. The response at the second degree of freedom is
completely wiped out by the higher frequency errors. Fig. 5.7b iilustrates the cumulative errors
which are dominated by the higher frequency. Since both A, and R; are negligibly small, only
the second mode effect needs to be considered in estimating the error bounds. By estimating
A, from the Fourier spectra, we can compute the error bounds with Eq. {5.24). The results
obtained are extremely accurate, as shown in Fig. 5.7b. This example illustrates a very unstable

condition where a high frequency component is concurrent with energy-addition errors,
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5.6, Force, Velocity, and Acceleration Errors

Up to this point, all the attention has been directed io the accuracy of displacement
response in pseudodynamic testing. However, restoring forces developed by a structure are
equally important and critical to the survival of the structure. In addition, velocity and
acceleration responses may also be considered by some researchers. These guantities have the
same order of accuracy as displacement response in SDOF testing. In MDOF tests, the experi-
mental results of these quantities can be totally misleading, even though the displacement

response i$ reasonably accurate. This is due to the existence of high frequency components.

In considering the accuracy of restoring forces, we can compute the cumulative force

errors from

el = ke, (5.25)
By substituting Eq. (5.10) into this equation, and knowing that k ¢,, = ©} m ¢,,, we have

€4 = m ﬁ‘,] @2 b En tian (5.26)

e
The comparison of the above equation with Eq. (5.10) indicates that cumulative force errors are
more significantly dominated by the higher modes than cumulative displacement errors, due to
the w,, factors. Therefore, restoring forces have more severe error prepagation in pseudo-
dynamic testing, especially when an extremely high frequency is present. This will be iljustrated
by an example in Chapter 7 (see Fig. 7.3). Because of this fact, unrealistically large forces can

be developed in a structure during pseudodynamic experiments; and the structure may suffer
premature yielding or failure.

Similarly, velocity and acceleration responses have more significant higher frequency
errors than displacement response. In these cases, modal contributions will be amplified by fac-
tors of w,, and w/,, respectively. Thus, acceleration suffers the same order of inAcurracy as res-

toring forces.
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5.7. Summary

Because of the higher mode effect, cumulative errors can grow rapidly in MDOF systems.
In the cases where errors are random, or systematic with an energy-additon effect, the highest
structural frequency is always the dominating f{actor in error propagation. Consequently, highly
coupled, stiff structures which have relatively wide frequency spans can experience a severe
effor-propagation problem. The systematic errors which dissipate energy are less undesirabie,
because they rapidly damp away insignificant higher mode responses, and moderately affect the
iower frequency modes. Therefore, the removal or suppression of high frequency components
is highly recommended for MDOF testing. The methods to achieve that include the use of
high frequency filters and frequency proportional numerical damping. The latter will be dis-

cussed in Chapter 7.
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CHAPTER 6
ERROR PROPAGATION IN INELASTIC SYSTEMS

6,.1. Introduction

In the previous chapters, analytical methods were developed to predict the growth of
cumulative errors in pseudodynamic testing of linear elastic systems. However, as inelastic
deformations cccur, the error-propagation characteristics will change because of the variation
of structural stiffness in the inelastic range. Consequently, the results previousiv obtained for
tinear elastic systems will no longer be applicable. In this chapter, we extend our investigation
of error propagation to inelastic systems. The inelastic error-propagation behavior will be for-
mulated using an ideslized SDOF elasto-plastic model. With the supplement of numericai simu-
lations, the idealized model will be used to identify the basic error-propagation mechanisms in
inelastic systems. Furthermore, parametric studies by means of numerical experiments are car-
ried out to gain a more thorough understanding of cumulative error growth in inelastic systems
under various conditions. By comparing the results of these studies with those of linear elastic
systems, some criteria for assessing the reliability of the pseudodynamic method in testing ine-

fastic structures will be established,

6.2. SDOF Elasto-Plastic Systems

In the subsequent studies, a SDOF elasto-plastic model, shown in Fig. 6.1, will be used.
This model is an idealized representation of general inelastic material behavior. As we will see
in the following simulations, the error-propagation behavior in inelastic systems depends on
various factors, such as the characteristics and magnitudes of external excitations, the inelastic
deformations developed, and the dynamic properties of a structure. Therefore, the exact error-
propagation behavior wilf vary from case to case. For this reason, only qualitative evaluations
and relative comparisons of the simulation results are possibie. An elasto-plastic model well

sutis these objectives.
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6.2.1. Cumulative Error Equation

The eguation for cumulative displacement errors in elasto-plastic systems can be
developed from Eq. {3.3}, the recursive step-by-step integration formulation, as in linear elastic
systems. For the elasto-plastic case, .., is the inelastic restoring force, which can be modelled

as

r,=k (d —d} (6.1a}

or

r=8{x; —x/)) (6.1t)

in which £ is the linear stiffness of the elastic region; 47 is the residual displacement in step /,
as shown in Fig. 6.1; and x/ is a residual vector which contains &/. By substituting Eq. {6.1b)

into Bq. {3.3}, and introducing the error terms as in Sec. 3.2, we can obtain

EHJ =A Ed + B erdw L S (e."rflu - §Jr+11 + x!‘tm') {62)

in which ¢/{, is the equivalent displacement error defined by Eq. (3.6) with the linear elastic
stiffness k; and vector ¥/,, contains the computed residual displacement &/, under the
influence of experimental errors, while x/,, is the exact residual vector. Finally, by going
through the same procedure as in Chapter 3, and by taking out the displacement-feedback error

term, we can get the cumulative error equation:
€yt = Era1 T €y {6.3a)
in which

Zle =D Y esin BA1(n—i+1) (6.3b)

j= ]

&1 =D Y {d — d) sin @A (n—i+1) (6.3¢)

f=1
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Eq. (6.3b) has the identical form as Eq. (3.30), which is the cumulative error eguation for
linear elastic systems. Therefore, the term £,.; can be considered as the elastic cumulative
error component. The additional error term €, ; is due to inelastic or residual deformations, as
indicated by the expression {d/ — d/) in Eq. (6.3¢). In a similar way, the numerical formulation

of inelastic displacement response can be decomposed into two components:

Gys1 = dyp + dpiy (6.4a)
in which

o1 = — D ¥ dl sin sAi{n-i+1) (6.4b)

fe=1

The 4., term is the linear elastic displacement component which would be the total response
if a structure remained elastic, while d/.; is the additional inelastic displacement component
due to structural vielding. By analogy, the inelastic component can be numerically conceived as
a displacement response induced by a series of impulse loadings. These fictitious loadings result
from the sudden stiffness change at the moment of yielding. Therefore, the inelastic com-
ponent contains displacement drifts which we can often observe from inelastic structural

responses, Similar observation can be made from the inelastic comulative error component.

Egs. (6.3} and {6.4) are the "linearized" ecuations of error propagation and displacement
response, tespectively, for an elasto-plastic system. The values of D and o« are based on the
linear elastic stiffness of the system. As a result, we can identify and compare the inelastic

mechanisms in error propagation.

6.2.2. Eguivalent Dsplacement Errors
In the above cumulative error equation, the equivalent displacement errors e/? and other
perameters are defined in terms of the lnear elastic stiffness. Therefore, according to Eqs.

{2.4) and (3.6), the equivalent displacement errors in inelastic systems are



< (6.5
in which %, is the iangent stiffness. In an elasto-plastic model, %, is equal to zero during pro-
gressive yielding, and to the linear elastic stiffness during loading or unloading. As a result, the
e/! s in elasto-plastic systems are always smaller than or equal to those ina linear elastic cases,
for the same magnitudes of errors /X and e/™. For this reason, the conclusions of the following
studies, using simulated force-measurement errors ¢, can be conservatively extended to cover

other forms of errors.
6.3, Numerical Simulations using the Elasto-Plastic Model

6.3.1. System Description and Numerical Results

The error-propagation mechanisms in elasto-plastic systems can be investigaied by means
of numerical simulations. In the following simulations, we use a SDOF elasto-plastic model
which has a linear elastic stiffness of 3.702 kips/in. and a mass of 0.01035 kip sec’/in. Thus,
the system has an initial period of w = 18.91 sec”!. The yield strength r, is 0.36 kip. The El
Centro 1940 (NS) accelerogram with a peak acceleration of 0.1g is used to develop reasonable
inelastic deformations in the system. To study the error-propagaticn behavior, we introduce

force-measurement errors into the simulations. These errors are modelled by

(6.6)

which means that if e is positive, the errors are of the energy-dissipation type. We select e to
be positive and be 10% of r,.

An integraiion step of .02 sec is used in the numerical computations. The results are
illustrated in Fig. 6.2, The first graph in the figure shows the displacement response histories

with and without errors. The energy-dissipation effect of the errors can be observed from the
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reduced amplitudes of the erroneous response. The second graph illustrates the decomposed
cumuilative error components as formuiated by Eq. (6.3). The elastic component €, , which is
represented by a solid line, is similar to the error-propagation behavior observed from linear
elastic systems. It has a symmetrical oscillatory growth. The inelastic component €,., is about
180 degrees out-of-phase with &/,,. It offsets g/, during early cycles, and drifts away from
the time axis at later ones. This contributes to the drift phenomenon in the total cumulative
errors, which are shown by the last graph of Fig. 6.2, A comparison of the inelastic displace-
ment component 4, and the inelastic error component ¢4, is shown by the first graph of
Fig. 6.3. These inelastic cornponents have similar behaviors. They tend to drift away from the
time axis with different magnitudes. The corresponding residual displacement 47 and residual

error {d7 — d7) are shown in the second graph.

For the purpose of comparison, a linear elastic simulation is performed with the same
elastic period and force errors as the previcus one. The results are shown by Fig. 6.4. The
curnulative errors 2,,, observed here are much greater than those in Fig. 6.2. The system
response is drastically damped by the energy-dissipating errors. Although e, in the previous
case has the same formulation as &, in the linear elastic system, the magnitude of gy,

ohserved is smaller,

The last simulation is performed with inelastic deformaiions and & peak ground accelera-
tion of 0.15g. This increased excitation level produces a very different inelastic response history
as iltlustrated in Fig. 6.5. However, the error-propagation behavior is similar to the previous
results. The inelastic component ¢,,, iends to offset Z;,, at some places, and causes a dis-

placement drift at others.

6.3.2. Implications Regarding Inclastic Ervor Propagation

Due to the inelastic component 2, , the error-propagation behavior in the elasto-plastic
model is very different from that in linear elastic systems. In the latter, cumulative errors are of

the oscillatory type. They are dominated by the resonance phenomenon provided that input
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errors are systematic. The linear elastic error propagation does not depend on the magnitude or
characteristics of external excitations; instead, it is a function of wAr and n. On the other hand,
the cumulative errors in elasto-plasiic systems produce a drift effect, with a slow oscillatory
growth. The resonance phenomenon in error propagation is suppressed by the frequency
changes during inelastic deformations. The oscillatory growth of cumulative errors is aiso offset
or damped by an inelastic drift mechanism. Since the d),, and e,,, components are of the
same nature, the estimation of inelastic cumulative error growth would be as difficult as the
prediction of inelastic structural response. The magnitude of ., is dependent on inelastic

deformations developed.

In general psendodynamic testing, we can expect that cumulative errors will start with an
oscillatory growth in the elastic range. As soon as inelastic deformations occur, the oscillatory
growth of cumuiative errors will be suppressed and a displacement drift is produced. if inelastic
deformations are smail, error propagation will remain similar to that in linear elastic systems,
ie. 2., will dominate. If inelastic deformations are severe, the less predictable €/, com-
ponent will dominate. Therefore, error propagation in inelastic systems varies under different

conditions.

6.4. Parametric Studies of Error Propagation

To identify the basic error-propagation characteristics in inelastic systems, we study a
series of error spectra for various parameters using the SDOF elasto-plastic model. From the
simulations in the previous section, we observe that error-propagation behavior varies with the
level of inelastic deformations. The maximum inelastic deformation developed in a SDOF sys-
tem can be expressed by a dimensionless quantity u,, which is called the displacement ductility
and is defined as the ratio of the maximum displacement developed over the yield displace-
ment, i.e. w,; = dy,/d.. If an elasto-plastic structure is subjected to a ground excitation, the
displacement ductility u, developed can be determined in terms of a dimensionless coefficient

n [18]. This coefficient is a measure of structural resistance to the intensity of a specific ground
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excitation, and is defined as

Ty

m {8y max

= (6.7
in which {a, ., is the peak ground acceleration of the record. In general, the smaller the value
of m is, the larger will be the displacement ductility. For this reason, various values of n will be
included in each error spectrum to study the influence of x, in error propagaiion. Each spec-
trum has a period range of 0.1 to 1.0 sec at 0.1 sec intervals. The errors /¢ used to generate
the spectra are again modelled by Eq. (6.6). The error magnitude e/k in each spectrum is
specified as « fraction of the vield displacement @,. In addition, the maximum cumulative
errors obtained in the following studies are normalized to dimensionless guantities. Conse-
guently, the results presented here indicate general characteristics of the elasto-plastic model

under certain specific excitation records.

6.4.1. Krror Batio Specira

A series of error ratio spectra is generated using 15 seconds of the El Centro 1940 (NS)
record with zero damping. The magnitudes of the earthquake are determined by the sclected »
values, which are 0.2, 0.8, 0.6, 0.4 and 0.3, respectively. These will visld a wide range of dis-
placement ductilities. The resulis are shown in Fig. 6.6. The error ratio is defined here as the
ratio of the maximum cumulative error developed in an inelastic simulation over the maximum
error expected for the corresponding linear elastic system of the same period. The maximum
expected error is computed by means of Eq. (4,14}, The magnitudes of the input errors ¢/ are
0.6014d,, 0.014,, 0.054, and 0.14,, respectively. Integration time step Ar of 0.02 sec is used
throughout the computations. From Fig. 6.6, we can observe that the maximum cumulative
errors in clasto-plastic systems are, in most cases, less than those expected for the correspond-
ing linear elastic systems. This is probably due o the suppression of resonance effect in error
propagation by inelastic deformations. A general trend can be observed from the spectra here.

The larger n values tend 1o have smaller error ratios. This indicates that cumulative errors tend
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1o be larger when higher displacement ductilities are developed. At period equal to 0.1 sec and
n equal to 0.3, the error ratios observed are large, occasionally exceeding 1. This is due to the
exiremely large displacement ductilities developed at that period. Furthermore, the erfor ratios
tend to be smaller in spectra which have larger magnitudes of ¢/, This means that cumulative
errors in elasto-plastic systems do not increase as fast as those in linear elastic systems as the

magnitude of input errors increases.

6.4.2. Reiative Error Specira

The accuracy of a pseudodynamic test does not depend on the magnitude of cumulative
errors alone, It alse depends on the displacement ductility developed. Therefore, we are more
concerned with the relative magnitudes of cumulative errors, rather than the absolute values.
To find the influence of displacement ductility on the accuracy of pseudodynamic results, rela-
tive error spectra are generated using the same excitation record as before. They are shown in
Fig. 6.7. The relative error is defined as the ratio of the maximum cumulative error over the
maximum displacement response developed in a system. By comparing Fig. 6.7 to Fig. 6.6, we
note that although relatively large error ratios are produced ai the 0.1 sec period, the
corresponding relative errors are small. This can be explained by the large displacement ductili-
ties at 0.1 sec period. The general trend observed from Fig. 6.7 is that the smaller the vaiue of
7 is, the smaller will be the relative error. Therefore, pseudodynamic results will be more accu-
rate if larger ductilities are developed in a systern. This is a reasonable phenomenon because
the energy effects produced by systematic errors become less significant as inelastic hysteretic

energy dissipation increases.

6.4.3. Error Spectra under Various Conditions

To check whether the previous results are consistent, error spectra generated under vari-
ous conditions are shown in Fig. 6.8. The magnitude of the input errors is 0.014d, for all spectra.

The integration time step is reduced to 0.01 sec. In the first row of Fig. 6.8, the error ratio and
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relative error spectra are generated wilth the El Centro 1940 record. The second row contains
the spectra produced by the Miyagi Oki 1978 ground acceleration record. Finally, the spectra in
the third row are again generated by the Ei Centro ground motion, but with an energy-addition
type of &/“

Although the distributions and magnitudes of the speciral values differ under various con-
ditions, the basic characteristics remain the same. The Miyagi Oki record shows larger error
ratios than the El Centro record, but most of the values still remain under 1. Error ratios always
tend to be larger at higher displacement ductility levels, and the reverse is true for relative
errors. In addition, the change of 47 does not significantly affect the spectral values. This is the

characteristic observed from systernatic errors in linear elastic sysiems.

&.4.4. Commentary

In general, error-propagation characteristics of elasto-plastic systems vaty under different
conditions, such as the ground excitations used and the dispiacement dugtility developed. How-
ever, several basic characteristics remain unchanged. Cumulative errors in inelastic models are
usually smaller than those in linear elastic systems. However, cumulative errors will grow as
displacement ductilities increase; and they may exceed those in linear elastic systems when
extiemely high ductilities are developed. In any case, they are usually relatively small when
compared to the maximum displacement response developed, as long as the input errors are
reasonably small. Most often, the larger the displacement duciility is, the smaller is the relative
error and the more accurate iz the resulf. In addition, the magnitude of cumulative errors in
linear elastic systems is proportional to the size of input errors, while cumulative errors are less
sensitive to input errors in the inelastic model. Finally, we can conclude that the development
of inelastic deformation may or may not increase the magnitudes of cumulative errors, depend-
ing on the inelastic deformation developed. In any case, inzlastic deformation is not detrimen-
tal to pseudodynamic festing, since any increase in curnulative errors is usually offset by a

greater increase in inelastic displacement.
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6.5, Relisbility Criteria in Inelastic Pseudedynamic Testing

From the parametric studies, we observe that cumulative error growth in inelastic systems
is Jess predictable than that in linear elastic cases. To assess the reliabifity of inelastic pseudo-
dvnamic testing, we summarize the results of the parametric studies in a more revealing form,
and compare them with linear elastic error propagation. To do that, some of the relative efrors
obtained in the previous section are normalized and plotted against displacement ductilities in
Fig. 6.9. They are normalized with respect to an elastic criterion, which is defined here as the
ratio of the maximum cumulative errors expected for the corresponding linear elastic system to
the yield displacement 4. Consequently, a normalized relaiive error can also be wriiten as
{error ratio)/p ;. according to the previous definitions. The elastic criterion is a measure of the
accuracy of a pseudodynamic testing if a structure deforms up to its elastic limit. It can be
obtained from the results of Chapter 4. By this normalization, the reliability criteria of inelastic

testing can be established with respect to those of linear elastic tests.

From the scatiered data points in Fig. 6.9, we can observe that the normalized relative
errors are approximately inversely proportional to the ductility fevel Therefore, a pseudo-
dynamic test is generally more accurate if a higher displacement ductility is developed. For
comparison purpose, 1/w, is plotted against u, as a solid line in the same figure. This curve
indicates the corresponding reduction of relative errors if a structure remained elastic at dis-
placements beyond d,. It is, therefore, the curve of normalized relative errors for linear elastic
systems. Within the ductility range of 40, we can see from the figure that most of the points
from the inelastic simulations lic below the solid curve. Only at large ductility levels (beyond
10), are a few points slightly above the curve. As a result, Fig. 6.9 confirms that inelastic pseu-
dodynamic testing is usually more accurate than linear elastic tests. Furthermore, an inejastic
pseudodynamic test can be reasonably accurate, even though the accuracy within the elastic
limit is poor.

Under the absence of more reliable information, the curve in Fig. 6.9 can serve as a con-

servative assessment of the accuracy of inelastic testing. For example, if a ductility of 20 is
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expected from a psevdodynamic test, the curve indicates that the normalized relative error will
be approximately 0.05. I the tolerance limit of cumulative errors is set to be 10% of the max-
imum displacement, then the maximum cumulative error within the elastic range should be less
than 2d,. In general, the yield displacement d, and the ductility g, are difficult to define in
realistic inelastic systemms, especially when a system has multiple degrees of freedom. However,
according to the above discussions, we can use the error-propagation criteria for linear elastic
systems to assess the reliability of inelastic testing. These criteria may become unconservative

only if severe inelastic deformations take place.
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CHAPTER 7

ERRCGR COMPENSATION AND NOISE REMOVAL METHODS
FOR PSEUDODYNAMIC TESTING

T.1. Intreduction

Experimental srrors in pssudodynamic testing have been discussed in Chapter 2 of this
report. From the error-propagation studies, we observe that the errors which are most detri-
mental (o pseudodynamic testing are of the svstematic nature, The problems of these systematic
errors can be summarized as: {i) causing an erroneous apparent stiffness of a test structure, e.g.
by mis-calibration of measurement transducers; (i) inputling exira energy into response
motions, e.2. due to truncation errors in the A/D conversions, or (iii) dissipating energy from

structurai responses, e.g. due to frictional forces.

In reality, the elastic stiffness of a structure may vary from case o case, even though
exacily the same material and member sizes are used for fabrication. Stiffness can be influenced
by many factors, such as types of member connections used, imperfect geomeitric
configurations, and base support conditions, especially. For this reason, the actual stiffness of a
structure often ¢iffers from the analytically predicted stiffness, Under normal circamstances,
this discrepancy is substantisily greater than the influence of experimental errors. Therefore,
the problem in (i) is usually insignificant, and can be neglected. Furthermore, since the fre-
quencies of & structure can always be manipulated through the assumed mass distribution in a
pseudodynamic test, a small stiffness error introduced under experimentai conditions can be

easily compensated for in most cases.

The energy changes due to experimental errors are manifested in s form of force-
deformation hysteresis, These energy effects can be of significant influence on pseudodynamic
results. For example, large frictional forces in a system or systematic overshooting of displace-
ments can induce unduly large damping effect on response motions, On the other hand, energy
eddition by systematic truncation errors or undershooting of displacements will excite spurious

high frequency modes, which cause stability problems in pseudodynamic testing of MDOF
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systems. In the worst case, both phenomena can co-exist, such that the higher frequency modes
grow rapicly, while the more realistic fundamental mode is damped out. These energy effects
are most undesirable, and can be cited as the major problems from previous experience. Pseu-
dodvnamic resuits will not be reliable if these energy changing errors are not eliminated or

properly compensated for,

in this chapier, two numerical methods are proposed 1o solve the sbove problems. The
first method uses squivalent hysterctic energy compensation, which can cancel out the energy
changes introduced by systematic errors. This method, assuming a comstant magnitude force
correction at each degree of freedom, is especially efficient for correcting force measurement
errors, such as those due to friction. The second method is s modified Newmark explicit algo-
rithm which has an adjustable numerical damping. By using this modified integration algorithm,
the higher mode effect can be damped out without significant influence on the lower modes.
These two methods can be used simulfaneuosly to achieve 2 siable and reliable pseudodynamic

test result,

1.2, Eguivalent Hysteretic Energy Compensation

As mentioned in Chapter 2, systematic errors often introduce snergy adding or dissipating
hystereses into the force-deformation relations of linear elastic SDOF systems. These hystereses
can be easily measured in most SDOF experiments. They can be numerically compensated for
by correcting the restoring force feedback, as shown in Fig. 7.1. Similar phenomenon exists in
MDOF systems. However, due to the couplings among the structural degrees of freedom, the
hysteretic energy behavior is difficult to measure. It involves N’ inter-relstions in a N-degree-
of-freedom gystem. Under this condition, numerical compensation is difficult. Since the higher
modes are more sensitive to errors, an inadequate ¢orrection may aggravate the problem. To
compensate for the erroneous energy effects in MDOF systemns, and to avoid the difficulties
mentioned above, an ierative correction process which uses an equivalent hysteretic energy

concept is developed here.
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7.2.5. Theoretica! Basis

To reduce the complexity of the error compensation problem, we assume that force-
feedback errors at each degree of freedom are of constant magnitude throughout a pseudo-
dynamic test. The signs of these errors are determined by the direction of force variation. In
this way, we can approximately simulate the energy changing hysteretic behavior caused by sys-
tematic errors, Using these assumptions, the equations of undamped motion of a linear glastic

MDOF system can be represented as

I

md+kd+i -fm}%f (7.1)

in which the last term on the left hand side is a vector of force-feedback errors; &/ is a constant
magnitude error at degree of freedom /; and #; is the corresponding rate of force variation.
Therefore, the & term is positive if it is energy dissipating, and negative otherwise. Applying

the conservation of energy principle to Eq. (7.1}, we obtain
] L4 (
sr 1
—d md+ = do= 1§ & fdt 1.2
2 2 ¢ ‘E i I E f

in which the first term on the left hand side is the kinetic energy of the system, the second
term is the strain energy stored, and the third is the work done by the force errors. The sum of
these three terms is equal to the total energy input by the external force I. If a system is excited

by a horizonial base acceleration, then

1 I

JiTta=- & m(1)q a (7.3)
0 0
where a4, is the base acceleration, and {1} is a unit vector with all elements equal to 1. By
transforming Eq. (7.2) into a system of modal energy equations, we can obtain the error &/ at
each degree of freedom of a system. To do this, we substitute Eq. (5.4) into Egs. (7.2} and

{7.3), and utilize the orthogonality conditions of the eigenvectors. Consequently, we obtain
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4

5 M, D)+ 2 K, D} +fD eV{" lrrl} (1.4)
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for a N-degree-of-freedom system. The quantities M, and K, are the generalized mass and
stiffness for mode m, as defined by Eq. (5.6). The above equation implies that the sum of the
energy in all participating modes is conserved. Since energy can be neither gained nor lost at
each mode in 8 closed system, Eq. (7.4) can be equivalently expressed as a system of N equa-
tions:
z i
¥ .
%M DZ-N‘-K D2+~fﬁ éTi"’!—;T}drw~fDm $im(la & (5
K (¥
for m =1, 2,...., N. These equations, enforcing the conservation of energy at each mode, can

be further transformed to

i : i il £ F Lo N
5MmDﬁ+¥KmBﬁ+§¢m,§{{Dmmd{ww_gﬁmagdz;qsmm; (7.6)

for m =1, 2,....., N. The quantity ¢, is the / th element of the eigenvecior &, and m, is the
mass at degree of freedom /. Consequently, the & °s can be found by solving the system of

linear equations:

AE =) (1.7a)

where matrix A has elements represented by

¢ .
. 7
G ™= ¢m;‘ { Dm m dt (77b)
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and vector b has elements:

1 2 1 - - X
by=— % My D2~ = Ky D2~ [ Dpa, &t 3 b m, (1.7¢)
2 2 1} jael

Therefore, if force errors in a pseudodynamic system are of the idealized form, they can be

easily computed by obtaining A and b from a trial pseudodynamic test.

7.2.2. Application

[

Errors in real experiments are more irregular than what we have assumed. The & s
found from the equivalent energy approach are constant magnitude force errors, which have the
same smount of energy effect as the actual experimental errors. These equivalent energy errors
can serve for two useful purposes. They can be used as error indices for pseudodynamic results.
In addition, they represent the amount of compensation required to correct the force-feedback
values. If the asctuel errors in a pseudodynamic sysiem are of the idealized form as in Eq.
{7.1), then all the erroneous energy effects can be eliminated by adding an error compensation
vector of — {& 7/|F,|} to the restoring force feedback. Unfortunately, this is usually not the
vase. Diisplacement contro! errors may vary with displacement levels, Force errors will vary
accordingly, with contribution from every other degree of freedom of 2 system. Under these
circurnstances, & single compensation may not lead us to a correct result, and an ilerative
correction is recommended. The €7 °s found at each iterative frial can be accumulated to the
error compensation vector until they become satisfactorily small. The convergence of the itera-
tive correction cannot be formally proved here, but conceptually it should approach a betlier
result after every trial. The closer the actual errors to the idealized form are, the less number
of iterations will be needed. For this reason, this method is especially useful for correcting
force-meagurement errors, such as those due to frictional forces, which are approximately con-

gtent throughout a test.
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1.2.3. Examples

To illustrate the wvalidity of the energy compensation method, it is applied 10 a two-
degree-of-freedom simulation. This system has the same properties as the one used in Sec. 5.5.
The fundamental frequency w is 10.92 sec™), and w, is 81.16 sec™), such that the second mode
is very sensitive to experimental errors. The correct response of the system, when subjected {o
the El Centro 1940 (NS}, 0.02g ground acceleration, is shown in Fig. 7.2. The integration step
used is 0.01 sec. From the figure, we can observe no obvious second mode participation in the
displacement response. However, the force history contains a moderate amount of second mode

effect.

To simulate a bad experimental setup, three types of errors are introduced info the sys-
tem. First, constant magnitude frictional forces of 0.002 kip are simulated 1o influence the
force-feedback values at both degrees of freedom. Secondly, the jack displacements at the first
and second degrees of freedom are deliberately mis-calibrated by 1.5% and 2.0%, respectively,
such that some energy will be dissipated by the inconsistent jack motions. Finally, fruncation is
used to convert analog displacement values computed to digital signals; and displacement meas-
urements are calibrated to 0.5 and 5.0 in. ranges for DOF 1 and 2, respectively. Therefore, rela-
tively large truncation errors, which add energy into response motions, will occur st the second
degree of freedom. With these assumptions, the response of the system is numerically com-
puted, and shown in Fig. 7.3, We can see that the second mode is significantly excited in the
displacement and force responses by truncation errors. Furthermore, the force response is
totally overwhelmed by the high frequency noise, such that the maximum forcs experienced by
the structure becomes ten times greater than what would actually be developed. The result is,

therefore, unaccepiable.

Subsequently, the equivalent energy method is used to correct the above situation. By
using this method, we achieve a satisfactory result with eight iterative corrections, in each of
which we take five samples of &/ at equal time intervals. The averages of these samples are

added to the cumulative force compensation vector. At the end of corrections, the average
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values of 2] and 2] are reduced from 0.0672 and -0.0123 kip to 0.0026 and -0.0017 kip, respec-
tively. The correction procedure is shown in Table 7.1. The final results are shown in Fig. 7.4,
from which we can cbserve that most of the high frequency errors are removed, and the correct

response is closely restored.

However, the rate of convergence in this example is slow. We can show that the number
of iterations required depends on the selection of compensation values at each trial. Due to the
existence of high frequency modes, adding energy into a system has a more drastic effect than
taking energy away from it. With this idea, we can increase the conversence rate in the previ-
ous example, but avoid additional excitation on the second mode at the same time. This is done
in the following way. Instead of taking the averages of five samples as compensation values, we
select the maximum energy-addition errors and the mimimum dissipative errors at each trial.
In this way, the undesirable growth of the second mode is rapidly eliminated, but the energy
dissipation is only gradually compensated for. Using this approach, we can obtain the same
level of accuracy as the previous example with five trials. The rates of these two approaches are

compared in Fig. 7.5.

7.3. Noise Remeoval by Numerical Damping

Some implicit integration algorithms, like the Newmark family of methods, Wiison’s #-
method, and Houboult’s method [12], are highly desirable for the analysis of structural systems
which have large numbers of degrees of freedom. Besides the fact that they are unconditionaily
stable, they aiso have a numerical damping property, which can suppress the spurious growth of
higher frequency modes. Hilber’s a-method [13] has the additional advantages that the numeri-
cal dissipation can be controfled by a parameter other than the time step, and that the lower fre-
guency modes are only moderately affected by the dissipative property.

Numerical damping is extremely helpful in pseudodynamic testing for two reasons. First,
it can be conveniently included to model the damping property of a structural system, both in

the elastic and inelastic ranges. Further, since the spurious growth of the higher modes due to



-85 -

experimental errors is the main source of system instability, the suppression of the higher fre-
quencies by numerical damping can ensure good experimental resuits. For these reasons, it is

desirable to use a dissipative explicit integration aigorithm in pseudodynamic experiments.

7.3.1. Orthogonal Viscous Damping

In the analysis of linear elastic MDOF systems, damping ratios £, of ail vibration modes

can be specified by a damping matrix of the form [16]:

e=my a, Im k] (7.8a)
b

in which the values of a,’s are determined by the equation:

£n = L g ap w2’ (7.8b)
This damping matrix has the orthogonality property with the eigenvectors of the structural sys-
tem, as described by Eq. (5.3¢). By means of Eq. (7.8b), we can select appropriste parameters
a,’s for suppressing the higher frequency responses with severe dampings, while keeping the
lower modes reasonably damped. To illustrate that, we take the two-degree-of-freedom example
with truncation errors in Sec. 5.5 (Fig. 5.7). In this case, damping can be introduced by a

specific form of Eq. (7.8a):

e=gym+a k (7.9

which has b’s equal to 0 and 1, respectively. This is the conventional Rayleigh damping. To
suppress the spurious growth of the second mode, we specify €, and £; to be 0.005 and 1.0,
respectively. The parameters a4 and q; are then determined by solving Eq. (7.8b). Using the
same excitation record and numerical procedure as in Sec. 5.5, we perform a simulation with
the Rayleigh damping. The result is shown in Fig. 7.6. By comparing that with Fig. 5.7, we can

see substantial improvement in the simulation results. The high frequency noise is suppressed.



- 86 -

However, problem arises when a structure becomes nonlinear. Since the orthogonal damp-
ing matrix depends on the stiffness of a structure, it has to be re~computed as the stiffness
changes. The sensitivity of this damping to the nonlinear stifiness effect is not known. Based
on Eq. (7.8b), it is clear that the effective damping ratic can vary radically with frequency and,
in some cases, give negative values. In other words, the parameters g,’s determined for a
specific system may not be appropriate for a system with s different stiffness. Since we cannot
directly monitor stiffiness changes during pseudodynamic testing, we have a problem of deter-
mining an adequate damping matrix for nonlinear structures. For this reason, an explicit
integration algorithm which has numerical damping is proposed here. The advantage of the
new algorithm Hes in the fact that numerical damping ratios are approximately frequency-
proportional. The higher the frequency is, the larger will be the damping. As a resuit, the
damping ratios of the participating modes are automatically re-adjusted by the algorithm as fre-
guencies are changed by nonlinear deformations. Explicit knowledge of the structural siiffness

is no longer necessary,

7.3.2. Diesipative Expilcit Algorithm
The new dissipative algorithm proposed here is a modified Newmark explicit method.
Rayleigh damping is incorporated into the algorithm by modifying the equilibrium equation in

the Wewmark explicit formulation, such that

m a0 +a) k+Eemldyy=fo+ ek +F5ma
At At
2
dﬁ-ﬂ =3 d,: + At v+ '1}_2{"' o, (71{})
Viep = ¥, + % {a; + az+1}

By rearranging the equilibrium equation, we can see that the numerical damping in the

modified algorithm is spproximately k- and m- proportional. This is similar to Rayleigh
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damping. By letting both o and p equal to zero, we havé the familiar Newmark explicit method,
" which has no dissipative property. When only p is equal to zero, we have the explicit e-
dissipation method [13}. When compared with the «-dissipation methed, the mass proportional
damping in the modified algorithm provides additional freedom fo adjust the distribution of
damping ratios among the vibration modes. The advantage of this will be discussed later in this
section. To obtain larger damping on the higher modes, we have to assume thal o is positive
and p is less than or equal to zero. With these assumptions, the algorithm has the following
numerical properties.

Stabiliy. A numerical method is stable if a free-vibration response given by it will not grow
without limit under any arbitrary initial conditions. The medified integration method is stable

under the following conditions:

{i) Fora > 0and p < 0,

‘ -
B cngiidl=Utae (7.112)
x 1+«
(ii) Fora = Gand p = 0,
< 3 £2 {7.11b)

in which £} = wAr. The method is unsiable if @ = 0 and p < 0. Eaq. {7.11b) is the stability
condition for the Newmark Fxplicit Method. We will see next that for & < J—pfa, damping
is negative and energy will be added into the response motion. For this reason, the method will

be unstable. The derivation of the stability conditions can be found in Appendix D.

Numerical Damping. Numerical damping of the integration algorithm can be found by means of
Eq. (3.20). Using the information in Appendix D, we obtain the following damping ratio equa-
tion and parameters:

F in (1——&522—;}) {1.12)
28
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where
— B
{} == arctan [ y, ]

ﬂz_g_
A=1-{1+a) 3 3

2 31,/2

From this equation, we know that damping is zero at {} = V~pfa. For & < /—p/a, damping

2
(I+a)~%-+fl

= 2
B lﬁ 2

is negative and the solution becomes unstable. Thus, V—=p/a is the lower stability bound. By a
proper combination of o and p, we can specify an optimal frequency-damping relationship. See
Fig. 7.7 for an illustration. The figure shows two sample curves governed by Eq. (7.12). Both
curves have ~/—p/a equal to 0.1, but have a equal to 0.1 and 0.5, respectively. We can see that
damping increases with increasing ee. In addition, by bringing v—p/a closer to @Az, we can
have a larger £,/ ratio. With a larger £,/ ratio, we can impose more severe dampings on
the higher frequency modes, while leaving the fundamental frequency undamped or slightly
damped.

The other property which may be of interest to the user is the period distortion caused by
the algorithm. As shown in Appendix B, the Newmark explicit method will only have a smali
period shrinkage when wA¢ is small. At low damping values, the modified algorithm is basicaily
the same as the Newmark explicit method. The period distortion increases as damping

increases. However, response becomes insignificant when large damping values are used.

7.3.3. Examples
In the first example, we try to further improve the two-degree-of-freedom simulation in
Sec. 7.2.2, using numerical damping. After the equivalent energy compensation, significant

high frequency noise can still be observed in the first few seconds of the force history, as
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shown in Fig. 7.3. This may cause premature yielding or failure of the structure in & teal test,
Therefore, in addition to the energy compensation, we impose a large second mode damping to
reduce the noise. By selecting o and p to be 0.420% and -0.005, respectively, we have N~
equal 1o w Af. As a result, £, is 0 and £, is 15.6%. The result of this simulation is shown in
Fig. 7.8. 1t indicates further removal of the high frequency noise. However, the displacement
response, which is basically at the fundamental frequency, is reduced ealso, even though ?g;; is
equal to gero. This can be explained by the fact that the energy compensation in the previous
example becomes excessive when the response is changed by numerical damiping. We have to
re-adjust the force correction vecior to improve the result. Numerical damping can aiso be
inciuded in the equivalent hysterstic energy compensation, as long as the energy change ca;a%d
by the damping is tsken into accounti in the energy equation. This mey be a better approach

than doing them separately.

The second example is a two-story shear building which is inelastically deformed. The ine-
lastic inter-story shear deformation relationships are modelled by the Menegotio-Pinte relation,
The properties of the structure are shown in Fig. 7.9. Under mild deformations (.e. when the
structure is approximately linear elastic), wy = 11.2 sec™! and @, = 357 sec™! A high fre-
quency noise is introduced into the displacement response by simulated force errors of the
energy-addition type. The comparison of the erroneous response with the cotrect one is shown
in Fig. 7.10. We see that the response at the second degree of freedom is severely coniaminated
by the high frequency nioise. The resulting hysteretic behavior becomes very different from the
actuel, as indicated by the lower graphs of Fig. 7.10. Integration step used is 0.02 sec. Finally,
by letting a and p be 0.4 and -0.016, respectively, we have £, = 0.9% and £, = 13.6%. The
significantly improved result with these damping values is shown in Fig. 7.11. The digplace-
ment response observed is slightly larger than the correct response because of the remaining

energy effect of the simulated errors, as the first mode damping is sall.
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T.4. Comments

The equivalent hysteretic energy compensation method is designed to correct the sys-
temnatic error effects. By this method, energy can be freely taken out from or added into any of
the participating medes until the correct structural response is restored. The smaller or more
consistent the errors are, the faster and easier will be the correction. Therefore, this method is
efficient for correcting force-measurement errors which are caused by frictional forces. When
errors are more irregular, compensation performed for one displacement history may not be
adequate for the others. In that case, good judgment and many trials are required to decide

upon the best force correction vector.

Numerical damping introduced into the Newmark explicit method is helpful for suppress-
ing the spurious growth of high frequency responses. It is complementary to the energy com-
pensation method. The number of iterations required in energy coempensation may be reduced
if high frequency noises are removed beforehand. However, care should be taken in selecting

—p/a, which should not exceed w)A?, as o decreases when a structure becomes nonlinear.
When used with the energy compensation method, the energy dissipation due to numerical

damping should also be included in the energy computation.

By using these correction methods, the error-propagation problems observed in the previ-
ous chapters can be significantly reduced. In addition, pseudodynamic testing of MDOF systems

under adverse experimental conditions becomes more stable and reliable.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

£.1. Bummary

Experimental error propagation in pseudodynamic teating has been thoroughly investi-
gated in this report. The major scurces of experimental errors are discussed. The errors are
cisgsified according to the sources, occurrence patterns, and their influences on sxperimental
results. Three integration methods which were previously recommended for preudodynamic
testing are studied here in terms of their erfor-propagation behavior. They are the basic central
difference method, the Newmark explicit method, and the summed form of the central
difference method. Based on the ertor-propagation behavior, the reliability of the peeudos
dynsmic ineihad in testing linear elastic and inelastic structures is svaluated. The additional
problems in MDOF testing are also identified. Analytical methods are developed for estimating
error bounds in linear elastic testing. Furthermore, two numerical methods are proposed to
improve experimental results and to prevent numerical instability in MDOF testing. They are
the equivalent hysteretic energy compensation snd the modified Newmark explicit algorithm
which has adjustable numerical damping. The modified algorithm is recommended for ail

MDOF pseudodynamic tesis.

From the results of this investigation, the characteristics of experimental srrors and of

their cumulative growth in pseudodynamic experiments can be summarized as follows:

{1} According to the sources, sxperimental errors can be classified into three genersl
categories: (i) displacement-control errors ¢ (ii) displacemeni-measurement errors edm
snd (iii) force-measurement errors ¢/™. These errors amount to the total displacemeni-
and force-feedback errors, e and ¢/, which can be introduced into numerical computa-
tions. Displacement-feedback errors ¢f can be avoided by using the computed displace-
ment in the numerical algorithm instead of the messured one. This procedure has been
analytically proved to be the more accurate approach for all three numerical algorithms

studied. Force-feedback errors, which are contributed by e and el™, are alwayg
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introduced into numericel computations. Therefore, they are totally responsible for the

cumuiative error growth in pseudodynamic experiments.

Two types of force-feedback errors can be identified: random and systernatic errors. Sys-
ternatic errorg often result from poor performance of experimental equipment, inadequate
instrumentation, or improper testing technique. They often have persistent energy chang-
ing effects. They can either dissipate energy from or add energy into a response motion,
such that a pseudodynamic response can appear to be significantly damped or have unlim-
ited growth (instability). No physical interpretation can usually be associated with random
errors, except that they also cause some undesirable excitations during pseudodynamic

testing.

Under the influence of force-feedback errors, the three numerical methods studied have
identical error-propagation properties. Error propagation due to systematic errors is much
more significant than that due to random errors. This is because of a resonance-like
phenomenon associated with systematic errors. Generally, significant cumulative errors
can occur in experimental results even though only relatively small systematic feedback
errors are present. The cumulative growth of random errors can always be minimized by
reducing integration time step Ar. However, the rate of systematic error growth with

respect to time is not sensitive to At.

For both random and systematic errors, the rate of cumulative growth with respect to the
number of integration steps depends on wht. The larger the @41 is, the faster will be the
cumulative error growth. Therefore, the higher frequencies of a MDOF structure are
more susceptible to error propagation than the lower frequencies. If systematic errors of
the energy-addition type are present, the high frequency modes of a system can be
significantly excited so that numerical computations become unstable. Consequently,
MDQF testing presents more severe error-propagation problems than SDOF tests. In gen-
eral, the wider the frequency span of 2 system is, the more severe will be error propaga-

tion,



- 8% .

{5} Error propagetion in inelsstic structural iesting is studied with a simple elasto-plastic
modet. Inelastic deformations of this type do not impose additional problems on pseudo-
dynamic testing. Instead, pseudodynamic results tend {o be more accurate in inelastic test-
ing. Accuracy increases with increasing displacement ductility. Therefore, the reliability
criteria for linear elastic fesis can be conservatively used io assess the accuracy of inelastic

testing, as long as inelastic deformaiions are within reasonable range.

8.2, Recommendutions for Peendodynamic Testing

Pseundodynamic resulis can be significantly influenced by the cumulative effects of experi-
mental feedback errors, Overall experimental results can be rendered totally unreliable, and
sumerical compulations can become unstable if the Feedback errors are not properly controlled.
Fortunately, most of the systematic errors can be eliminated or reduced to insignificant levels
by using appropriate instrumentations with proper calibration, reliable test apparatus, and good
experimental fechniques. To assess the significance of these errors prior to testing and mitigate
their effects during testing, the following precsutions and improvement methods are recom-

mended.

8.2.1. Prelimingry System Check

Possible sources of experimental errors must be first identified before any test. Some of
these are discussed in Chapter 2 of this report. Generally, the presence of any significant sys-
tematic errors can be easily detected with some preliminary tests. The following checks can be

carried out to assess the accuracy of the pseudodynamic system:

(1) Force-feedback errors are contributed by both displacement-control errors e and force-
measuremnent errors ¢/, Most of the displacement-control errors, especially those of the
energy-addition tvpe, can be observed from the discrepancy between the computed and
the measured displacements. Thig discrepancy can be monitored during some trial pseu-

dodyniemic tests. By computing the Fourier spectrum for the monitored error signals,
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systernatic errors can be identified by peaks located at the natural frequencies of the struc-
tural system:. The accuracy of displacement conirol can also bs checked by imposing a
series of simple displacement increments with the pseudodynaric control systern. Gen-
erally, most of the displacement-control errors and insiability sources can be identified

before any maior 1est,

Preliminary pseudodynamic testing within the linear elastic range is always recommended
before any destructive fest. Linear elsstic pssudodynamic resuits should closely match
analytical results obtained with appropriste stroctural models. Significent discrepancy
between the two indicates the presence of experimental errors. It must be noted that poor
experimental results in the elastic range do not always imply poor resulis in inelastic test-
ing. Kelative errors are aporoximately inversely proportional to structural displacements
developed. The larger the inelastic displacement is, the more accurale will be the result.
If results are accurate within the elastic range, then any further inelastic testing should be

reliable as well, us far as experimenial error propagation is concerned.

During preliminary testing, measurement of the equivalent hysteretic energy errors, as
described in Chapter 7, is desirable, It provides quantitative information about error mag-

nitudes and the amount of compensation required to improve the result.

Most experimenial inaccuracies can be detected with the above precautions. It should be

noted, bowever, that a small amount of energy dissipation is usually expected because of locat

vielding or frictional damping in a test siructure. Prior to any test, all sysiematic errors should

be reduced as much as possible by adiustment of test equipment, modification of testing tech-

nigues, or use of different apparatus if necessary.

8.2.2. Improvement Methods

Experimental error effects which remain after the preliminary checks and corrections can

be compensated for or eliminated by the two numerical methods discussed in Chapter 7:
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(1) The equivalent hysteretic energy compensation can be used {0 correct persistent energy
modification effects. It is especially recommended for correcting exceedingly large energy
dissipation due to {rictional damping. However, erroneous high frequency oscillations can

be suppressed meore efficiently by using numerical dissipation.

{2} The spurious growth of the high frequency modes of a MEXOF system can be conveniently
suppressed by means of the modified Newmark explicit algorithm, which has aumetical
dissipation, The numerical damping can be adjusted in such a way that the high frequency
modes are severely damped, while the lower frequency modes are only moderately

affected.

8.3. Conciuding Remarks

Pseudodynamic testing is a feasible experimental method from hoth theoretical and practi-
cal viewpoints. Reliable pseudodynamic results can be obtained by means of good instrumentia-
tions and appropriate test apparatus, as well as efficient error compensation or removal tech-
niques.  From our investigation, we can conclude that the propagation of experimental errors

through numerical computations is 3 major problem in pseudodynamic testing.

Additional studies of error propagation in MDOF inelastic svsterns should be done
(though not expected to be a problem). Verification tests should aiso be performed to compare
pseudodynamic test results with shaking table test resuits. Furthermore, the efficiency of the
error control methods in actusal testing should be evaluated, and other alternatives should be
studied. Therefore, identification of experimental errors in complicated pseudodynamic testing,
improvement of insirumentation techniques, selection of good performance equipmenis, and

refinements of numerical schemes should be the main ohiectives of future researches.
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Basi'c Newmark Summed-Form
Central Difference Explicit Central Difference
v 0 I 1
i
X, {af“ d’—]}r {di’ Vi, a[}r {dn Z}T
1 Ar a2
2z
D 2 ~1 D 1 & I Ar
10 : 0 1
O 90 0
S {wim, 0} {w?m, 0, 0} {w’m, 0}
i
- n o . & 2 {0, &7
ki
1 At Al
A 2—w?Ar? —~1 _ygjﬂ IMZ?Z Ar—w?ard 1 IN;
1 0 —w? —wlAr Wart —w?Ar 1—w’Ar?
2
Table 3.1  Characteristic Matrices and Vectors of the Explicit

Integration Algorithms
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Rasic
Central Difference

Summed-Form
Central Difference
&
Newmark Explicit

ay, 2 e’ ef

as 2 AB«_l o A - L o
by, “ 2{(1—4) ¢ 0

by, ] 2_(1-BM__MA)_A et 2 (1; A)
Table 3.2 The Parameters for the

Error-Propagation Equations

of the Explicit Integraiion Algorithms
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£ Cumutiative Error Total
Harmonic Error Bound by .
I Cumulative
NS{tj of Amplification Factor § Each Harmonic (in) | Eiror Bound
°ps H, 2l¢| H (in)

1
| H,
3fwm3fmmﬁfmw&ﬂM322hAf

0 G 0 ] 0 §
100 19.4 18.3 § 0.016 | 0.023 ) 0.039
200 38.0 37.1 § 0.031 1 0.044) 0.075
300 55.4 52.8 || 0.045 | 0.062 (| 0.107
400 71.3 65.2 § 0.058 | 0.077§ 0.135
500 85.1 73.6 { 0.069 § 0.087 §f 0.156

600 96.4 77.6 § 0.078 | 0.092 4 0.170

700 104.8 76.8 § 0.085 | 0.091 Ii 0.176

Table 4.1 Cumulative Error Bound due to Two Major Harmonics

Near Resenance Frequency -
{w = 18.91 sec™!, Ar = 0.02 sec, the example in Fig. 4.5)
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Vibration Freguencies o Ar
Modes w (ar = 0.01 sec)

m {sec™)

1 7.76 0.078

2 21.0 0.210

3 34.4 0.344

4 45.8 0.458

5 54.5 0.549

6 66.7 0.667

Table 5.2 Modal Frequencies of a Six-Story K-Braced Steel Frame

Normalized Mode Shapes ¢,

CYE T

m=1 m= 2 m=3 m=4 m=5 m=6
-0.5784 0.5398 0.4613 0.3731 -0.1478 0.0141
-0.5315 0.2193 -0.2625 -0.6476 0.4210 -0.0622
-0.4421 -0.2277 -0.5698 0.0968 -0.6172 0.1943
-0.3398 -0.4837 -G.0989 0.4904 0.4500 -0.4448
-0.2328 -0.5046 0.4161 -0.1042 0.1702 0.6915
-0.1335 ~-0.3465 0.4591 -0.4250 -0.4342 -0.5312

Table 5.3 Normalized Mode Shapes of a Six-Story K-Braced Steel Frame
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Random FError Amplification Factor for Fach Mode m Root-Sum
. -Eguare

e Factor

— LEHLT“‘XX
m=1 m= 2 m = 3 m=4 m=5 m=6 S.
2.86 7.21 16.2 11.1 5.34 0.530 17.8
2.63 2.93 5.80 19.3 15.2 2.78 Zh.7
2.19 3.04 12.6 2.88 22.3 &.70 27.4
1.68 6.46 2.18 14.6 i56.3 18.9 30.3
1.156 6.74 9.19 3.10 6.16 31.0 33.7
0.660 4.63 10.1 12.6 15.7 23.8 33.1

Table 5.4 Modal Contributions of Cumulative Frrors in a
Six-Story K-Braced Steel Frame
{at 1 = 20 sec, Ar = 0.01 sec)
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Vibration | Frequencies wAf
Modes @ (Ar = 0.005 sec)
m (sec™)
1 7.76 0.039
2 26.1 0.131
3 57.6 0.288
4 98.9 0.494
5 144 0.721
6 312 1.561

Table 5.6 Modal Frequencies of a Six-Story Reinforced Concrete Structure

Normalized Mode Shapes ¢,

(¢.‘g ¢.‘?? = 1)
m=1 m=2 m=3 m= 4 m=5 m=6
0.6509 -0.5981 -0.3219 -0.112 0.0051 -0.3203
0.5303 -0.0039 0.2545 0.3502 -0.1872 0.7045
0.4115 0.3541 0.6324 0.0085 0.3080 -0.4587
0.2925 0.4660 -0.2388 -0.7633 -0.0759 0.2279
0.1830 0.5184 -0.4440 0.4716 -0.4192 -0.3203
0.0821 0.1758 -0.4214 0.2449 0.8299 0.1901
Table 5.7 Normalized Mode Shapes of a Six-Story Reinforced Concrete Frame
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Random Error Ampiiﬁcegi:n} ITactor for Each Mode m Rgz;z;‘em
P Factor

m=1 m=2 m =3 m=4 m=5 m=6 ”"E{%EL
2.27 7.02 8.38 5.07 0.353 71.5 72.6
1.85 0.05 6.63 16.0 12.9 i57. 159,
1.44 4.16 16.5 0.388 21.3 i02. 106
1.02 5.47 6.22 34.8 5.25 50.9 62.5
(.64 6.09 11.6 21.5 29.0 71.% 81.2
0.29 2.06 11.0 i1.2 57.4 4z2.5 73.1

Table 5.8 Modal Contributions of Cumulative Errors in a
Six-Story Reinforced Concrete Structure
{at + = 20 sec, Ar = 0.005 sec )
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o il R
i 1 5 3 . 5 £() - g E(e)
1 0.C006] 0.0064] 0.0083 0.0094] 0.0113) 0.00728 -0.0072
2l -0.0217 -0.0137 -~0.0107 -0.0076| -0.0075 || -0.01228 0.0127
1l -0.0014; 0.0007; 0.00521 0.0009 ©.0047{ 0.0020! -0.0092
2 ~0.0218] ~0.0122| -0.0095|-0.0049| -0.0050 | ~G.01078 0.07729
Ll -0.0302] 0.0053} -0.0057{-0.0062{-C.0056 || -0.0085} -0.0007
2| -0.0125]-0.0141] -0.0041}-0.0037]-0.0017 §j -0.0072 0.0301
13 0.000Z2 | 0.0005] -0.0000f 0.0005] 0.0020 | 0.0006] -0.0013
2 i---(}‘,0132 -0.0035| -0.0033{-0.0026{-0.0036 [} -0.00524 0.0353
1 H—-0.003{) -0.0023; -0.0018]-0.0016-0.0005 || -0.00181 0.0005
2 1-0.0091 | -0.0023| -0.0026]-0.0028]-0.0012 § -6.0036! 0.0389
1 0.0010 | 0.0022] 0.0003| 0.0010) 0.0016 || 0.00124 -0.0007
2 1-0.0118 | -0.0069} -0.0033|-0.0017]-0.0003 {| -0.0048} 0.0437
1(-0.0093 | -0.0078| -0.0039(-0.0031!-0.6054 || -0.00591 0.0052
2 §-0.0085 {-0.0025] -0.0016{ ©.0009) 0.0002 {| -0.0023¢ 0.0460
1 1-0.0044 |-0.0043] 0.0056| 0.0062] 0.0065 [ 0.003 | 0.6016
2 1-0.0015 |~0.0016; -0.0018]-0.0022(-0.0026 || -0.0019 || -0.0479
1§ 0.0019 | 0.003%] 0.0031] 0.0023; 0.0017 |} 0.002610 sTOP
4 ﬂ-0.00IG -0.0029] -0.0014{-0.0011}-0.0015 Huo,OOI?g

Table 7.1  lterative Correction in a Two-Degree-of-Freedom Sysiem

by the Equivalent Hysteretic Energy Compensation Method
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fm= i1
Displacement Computed and
to be Imposed at Step /:

d;

Actual Feedback:

- j — P Actual Displacement:
4 =d +e R
F- - .E + e!,,m 1 F i

7 3

F;i!
‘f-'bf'" W —

STRUCTURE

Fig. 2.1  Sources of Experimental Errors in Pseudodynamic Testing
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i=i+1

\d

¥

Compute Displacement
at Step /:
d;

b

Incremental Displacement:

di = d; — d..
Displacement and Load Ad : -
Feedback:
d'.‘ = Vd x Cd 3
A. — r
Foe=v x C, Convert Displacement Units
. to Volg_age:
AV,' o Ad;/ Cj
v = v+ Ay
! ACTUATOR ~I
CONTROLLER

Excitati'on Voltage:
vi= y; % SPAN

D

yes

Change Structural Displacement
by a Hydraulic Actuator

L

Voltage Feedback from
Displacement and Load
Transducers:

v vr

_._J

Fig. 2.2  Displacement Control Diagram of the Pseudodynamic System at Berkeley
(C;: actuator displ. calib., C,: displ. transducer calib., and C;: load trans-
ducer calib.; C; = C,; x SPAN)
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(a) Relation of Force-Feedback Errors (e))
with Computed Displacements {d.}

(b) Apparent Stiffness (k) vs Actual Stiffness (k) of a System

Fig. 2.3  Systematic Error Effects due to Mis-Calibration of Control
and Measurement Transducers
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(a) Relation of Force-Feedback Errors (e))
with Computed Displacements (d)

’/ /
/ r
/ €i
/ . -
A/ 51— ENERGY ADDITION (e; & - Ad;)
£ ./ y  ond
/ -
/ // di
i -
/ 4 Enero DissipaTioN (e} « ad;)
Al

{b) Apparent Energy-Changing Force-Deformation Hysteresis

Fig. 2.4  Systematic Error Effects due to Mis-Calibration of Actuator Displacement
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L_L \\({/ i.._.._._. TIME

r
€

(a) Relation of Force-Feedback Errors (e))
with Computed Displacements {d,}

oy

(b) Apparent Energy-Dissipating Force-Deformation Hysteresis

Fig. 2.5  Systematic Error Effects due to a Constant Frictional Influence
on Force Feedback
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(a) Relation of Force-Feedback Errors (e}
with Computed Displacements (4}

(b) Apparent Energy-Adding Force-Deformation Hysteresis

Fig. 2.6  Systematic Error Effects due to Truncation Errors in the
A/D Conversions of Displacement-Control Signals
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DISPL.

N
—--*--hv’\\/*————--- TIME

{a) Relation of Force-Feedback Errors (e
with Computed Displacements (d,)

(b) Apparent Discontinuity of Stiffness

Fig. 2.7  Systematic Error Effects due to Idealized Slip Movement
of System Support at Load Reversal
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M\; A"y AA e

i;r \\‘:ffrw TIME

{a) Relation of Force-Feedback Errors (e}
with Computed Displacements (d)

o ')
,"‘ 4 ——ENERGY ADDITION
R/ (LAGGING BEHIND)

f + - S
Al

a‘, (4 d i

"/} ~—— ENERGY DISSIPATION
i/ {OVERSHOOTING )

(b) Apparent Energy-Changing Force-Deformation Hysteresis

Fig. 2.8  Systematic Error Effects due to Persistent Overshooting
or Lagging-Behind of Actuator Motion
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Il , AMPLIFICATION FOR DISPL. FEEDBACK ERRORS

-~ == | D} ; AMPLIFICATION FOR FORCE FEEDBACK ERRORS
1
o
5
(=]
- W -
z = =
i =
- 2 wd
§:§ >
w2 ‘5
o p- =
_ - z
52 ©
M
pm - -~
0 0.5 2.0
(a) Basic Central Difference Method

(b) Summed-Form Central Difference
and Newmark Explicit Methods

Fig. 3.1 ~ Comparisons of Cumulative Error Growth Among
Different Integration Methods
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0.00t

5 10 iS5

(a) Simulated Displacement-Control Errors (e)
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~ 0.1

5 10 15

(b) Total Cumulative Displacement Errors (g} Measured
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5 10 15

(¢) Cumulative Displacement Errors due to
Displacement-Feedback Errors (ef = e}

0.1

g g g g S g R N P NG N R R

- 0.

Fig. 3.2

5 10 15
TIME, SECONDS

(d) Cumulative Displacement Errors due to
Force-Feedback Errors (ef = k ¢®)

Error Propagation in the Basic Central Difference Method
(v = 18.91 sec™!, Ar = 0.02 sec)



- 119 -

0.00l

0 5 10 24
(a) Simulated Displacement-Control Errors (e™)
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Ll 0.1
I
O
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0 e
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o
O
o -0
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L (b) Total Cumulative Displacement Errors (¢) Measured
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=
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0O 0O 5 10 i5
(¢} Cumulative Displacement Errors due to
Displacement-Feedback Errors (ef = ¢%)
0.1
O vvvvvvvvvvvvvvvvvvvvvvvvvvvv A
-0.1

0 5 10 15
TIME, SECONDS

{d) Cumulative Displacement Errors due to
Force-Feedback Errors (¢ = k )

Fig. 3.3  Error Propagation in the Newmark Explicit Method
{0 = 18.91 sec™!, At = (.02 sec)
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(a) Simulated Displacement-Control Errors (e)
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(c) Cumulative Displacement Errors due to
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=
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0]
-0.5
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Fig. 3.4

5 1o
TIME, SECONDS

(d) Cumulative Displacement Errors due to
Force-Feedback Errors (ef = k %)

Error Propagation in the Basic Central Difference Method
(v = 18.91 sec”!, and A+ =0.01 sec)
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-0.001
0 5 Ko, I5
(a) Simulated Displacement-Control Errors {e)
0.5
)
i.l..! O e st o e A,,“-.Annnnnnnnnnnnnnhn!\hﬁﬁl\!
5 vvvvvvvvvvvv A A A A R AR AV A RV VL VALY Y R TR YR T Y
=
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g (b) Total Cumulative Displacement Errors (g,) Measured
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m O vvvvvvvvvvvvvvvvv i vnvavnnnﬂﬂﬂ.ﬁﬂl\ﬁﬁﬂdﬁﬂﬁﬂnﬂAAﬁﬁ!
§ M AR A A A R A A TR A AT ATATAYATRY)
Lud
O
< -05
ﬁ_j C 5 10 i5
7p) {c} Cumulative Displacement Errors due to
B Displacement-Feedback Errors (ef = %)
0.5
8]
-0.5

0 5 10 15
TIME, SECONDS

{d) Cumulative Displacement Errors due to
Force-Feedback Errors (¢f = k ¢%)

Fig. 3.5  Error Propagation in the Newmark Explicit Method
{w = 18.91 sec”!, ar = 0.01 sec)
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AMPLITUDE, IN. ERROR, IN

DISPL. ERROR, IN.
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(a) Simulated Random Displacement-Control Errors (e)
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| C
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0.0235 0 5 e 15
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(¢} Cumulative Displacement Errors (&) due to
Force-Feedback Errors (ef = k e%)
Fig. 4.2  Propagation of Random Errors in a Pseudodynamic Response
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(0 = 18.91 sec™!, Ar = 0.92 sec)
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TIME, SECONDS

(c) Cumulative Displacement Errors (Z,) due to
Force-Feedback Errors (ef = k e*)

Fig. 4.5  Propagation of Systematic Errors in a Pseudodynamic Response
(0 = 18.91 sec™!, Ar = 0.02 sec)
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Cumulative Displacement Errors (&) due to
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Fig. 4.6  Propagation of Systematic Errors in a Pseudodynamic Response
(w = 18.91 sec™!, a7 = 0.01 sec)
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Fig. 5.2 Six-Story Reinforced Concrete Structure
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(a) Two-Degree-of-Freedom Model
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{b) Exact Numerical Responses using Newmark Explicit Method
(At = 0.02 sec)

Fig. 5.3  Two-Degree-of-Freedom Simulation using El Centro
1940 (NS}, 0.02¢ Ground Acceleration
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Fig. 54 Random Errors Generated in 2 2 DOF Simuiation
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Fig. 5.5 Two-Degree-of-Freedom Simulation with Random Errors
using El Centro 1940 (NS), 0.02¢ Ground Acceleration
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Fig. 5.7  Two-Degree-of-Freedom Simulation with Systematic Errors
using Ei Centro 1940 (NS), 0.02¢ Ground Acceleration
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7 t o
/ dyfl d; DISPLACEMENT {d)

Fig. 6.1  Elasto-Plastic Model of a Single-Degree-of-Freedom System
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APPENDIX A
MODELLING OF SYSTEMATIC ERRORS

Al. Transducer Calibration Errors

We assume that displacement and force transducers are mis-calibrated with small errors
+8C, and £8C,, respectively, and that C; and C, are the correct calibration faciors of the
transducers. Due to the displacement transducer calibration error, the actually imposed and

measured displacements are

df' = d; + E,dc (Al)

and

respectivelv, where E,- is the computed displacement; and e,d‘ and e,-‘"”’ are the displacement con-

trol and measurement errors. The incremental displacement at each step is

|
®
|
»

A P T T G (A2}

Because of the erroneous calibration factor, the displacement-voltage conversion is incorrect,

and the actually imposed displacement becomes

Y

et ¥ —_ % AE{

=d | + — A3)
i i1 Ca' + 5Cd Cd (
Neglecting the higher order terms of 8/ C,, we have
- - —. §C
Cy

Substituting Egs. (A1} and (A2) into Eq. (A4), we get
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N 5C,  _
im@meﬂ—waim¢_eﬁ~fﬂ) (AS)
d

in which Ad; = d;, — d._;. Due to the error in voltage-dispalacement conversion,

. — 8C,
diy = diy {I bod —fctij (A6)
d
5C,; .
Consequently, e = + mﬁm‘i di—y. Substituting this inte Eq. (AS5) and neglecting the
d

(8Cy/ Cphe and (6C,/ C)ef terms, we obtain

p E+§§i 3] (AT)

5C, -
el_di‘= ‘.~+.. d_ dj (Ag)
Ca
and
g‘.dm = — e}df
Similary, because of the load {ransducer calibration error #8C,, the measured force feed-
back is

Fi=k d; [1 + BC’} {A9)

k 4, (A10)
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Neglecting the (8C,/C,) ef term, we have

k d (A1D)

A2. Actuztor Displacement Calibration Error

If the calibration of actuator motion is inconsistent with displacement transducer calibra-

tion, such that there is an error £38C;, the actually imposed displacement at step i becomes

—

e e Ad;

= d e Al2
d; "1+Cj:tacjcf (A12)

where C; = C; x SPAN is the correct calibration factor of actuator displacement (see Fig. 2.2);

and

Adj =l T et (A13)

by assuming that displacement measurement errors do not exist. Substituting Eg. (A13) into

Eq. (A12), and neglecting (6C/ C;)e; and the higher order terms of 8C;/ C;, we have

- - 8C;, -
di=d + T’Ad,- (A14)
f)

Therefore, the displacement-control errors are

el = & / Ad, (A15)
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APPENDIX B

EXPLICIT INTEGRATION ALGORITHMS

Bi. Formulations and Numerical Properties

(i} Basic Centrai Difference Method

Without viscous damping, the dynamic equilibrium of a SDOF system at time ¢ = { &ris

mai"?'rjwf, (Bi)

where r; = k 4. In the basic central difference method, the velocity and acceleration terms are

approximated by

diey — diy
= T (B2)
Vi 2 A

o d—2d+ diy
a= ING

respectively. Substituting the acceleration term in Eq. (B1) with Eq. (B2}, we have the numeri-

cal formulation:

AP
d,-_i.;WZd,—di_.;"i'?(ff—r,-} (BB)

Further, by letting r; = k d;, and f; = 0 in Eq. (B3}, we can obtain a recursive matrix form of

free-vibration response:

Y= AX (B4a)

where

dy
X; = { } (B4b)
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and

P—wlAl —1
A=1 1 0

Stabiliy. A numerical method is stable if the free-vibration response computed by it will not
grow without bound for any initial conditions. From Eq. (B4}, we can see that
d,= ci A+ ¢y A, where Ay, are the eigenvalues of A (refer to Sec. 3.3). Therefore, the
method is stable if I)\m! < 1. Furthermore, k;; must be complex conjugates in order to have

oscillatory response. By solving the eigenvalue problem (A — i T} = 0, we have

Ais=A xiB (B5a)
where
24 2
A=l é” (BSb)

- \/47— (w? A ~2)°
2

B

To satisfy the stable oscillatory response conditions, we must have {42+ BY) < 1 and B be
real. Since (472 + B?) is always equal to 1, according to Eq. (B5Sb), we have the stability condi-

tion that

(WA~ 22K 4 (B6)

which implies

0 € whr <2 (B7)

When B =0, the response is non-oscillatory, but stable.

Aceyracy. The accuracy of a numerical method is measured by the deviation of numerical

damping ¢ and frequency @ from the true ¢ and w values of a system. According to Egs.
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(3.20) and (B5b}, we have

£ (B8)

ey
If
o

and

V4~ (@ A~ 2)2
2 —wiAP

W = arctan

1
At

Therefore, the central difference method does not have numerical dissipation property. From
Eq. (B8), we can find that (w — @)/w is smaller than 1% when wA¢ is less than 0.5. Conse-

quently, both accuracy and stability can be achieved with reasonably small Az,
(i} Newmark Explicit Method

Using the Newmark integration method [11], we consider the equilibrium equation:

m iy g = fos (89)

and assume that the velocity and acceleration can be approximated by

Vip] = ¥ + E(l - Gi) ; + o a,~+1} At (BIO)

dHLi: d:+ V;AI'J'E(‘;__,B) af+ﬁﬂi+;]Af2 (Bll)

whete o and B are parameters selected by the user. By letting o = 1/2 and 8 = 0 in the above

equations, we immediately obtain an explicit algorithm as

Ar
dipy=d. + At v, + = a (B12)
1
ay = — (fip1— ris1) (B13)
44

Visp = v + "%‘“F‘ (a; + a;59) (B14)
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By setting fiuy = 0 and ryq = k &4, we can obtain a recursive matrix equation of free vibra-

tinr: as Bg. (Bda) with

d;
=¥ (B15)
&
and
A gh
P VRS Vol - Vi - Y
‘ 2 p 2
34 42
gz At “wff-

i frse two clgenvalues, hpo of A fturn out to be idendical 1o those in {i), and

ks o= 3 Therefore. this method has the same numerical properties as the basic cenfral

ence msthod,
{5} Summmed Form of the Central Difference Method

From Eq. (B9), the dynamic equilibriom at ¢ = {7 + 1} Az, we get
@ryp1 = “j“g (fras — F;H} (B16)
Defining & new term 2, = (4 — dJ/A 1, we have
dips = di + A1z, (B17)

Hence, knowing zi4; — 2, = (dipy — 2 disy + d)f A1, we can obtain from Egs. (B2) and {(B16}

the expression

Zigy = z; F %f (frer— 1) (B18)
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Egs. (B17) and (BI8) are the summed form of the central difference method. It can avoid
unfavorable rounding errors which will occur in the basic ceniral difference method when At is

very small {14].

In a similar way as before, we find a recursive matrix formula with
d;
X, = (B19)

and

1 Ar

A= —w?At I—w’Af

The eigenvalues of A are again identical to those in Eq. {B5). Therefore, the numerical proper-

ties here are simtilar to those of the two previous methods.

B2. Transformability of the Explicit Algorithms

The three explicit integration algorithms just discussed have identical numerical proper-
ties. This can be expected if we know that they are transformable to one another and are

mathemtically identical. This will be shown in the following.
(i} Summed Form to Basic Central Difference Form

Because of Eq. (B17), we have
dH'l - d,‘ bl df e d,'m] + At (Z,‘ - Zj._]) (Bzo)
Substituting z, — z,.1 in Eq. (B20) with Eq. (B18), we obtain Eq. (B3).

(i) Newmark Explicit Form to Basic Central Difference Form

Because of Eq. (B12), we have

2
df.;.]_ - d; = d’i . d;ﬁ,] + AI‘ (V,‘ - V,'....]) + 'é'i{_ (a,' - a,'.._l) (le)
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Substituting v, — v, in Eq. (B21) with Eq. (B14), we get

dig1 ~ di= dy— diy + AP a; (B22)

which is again Eq. (B3) by subsituting a; with Eq. (B13).

However, because of the different numerical forms, these methods can have different
magnitudes of rounding errors and error-propagation properties when computations are carried

out with a digital computer and experimenta! feedback is used during a pseudedynamic test.
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APPENDIX C

ERROR PROPAGATION EQUATION
FOR THE BASIC CENTRAL DIFFERENCE METHOD

From the basic central difference method, we can identify the following characteristic

matrices and vectors:

S = {w?m, 0}

(C)

Since x; = {d,, d,_,}7, errors introduced in each step can be modelled as ef= {e? 0} and

e/?={e/] 0}7, respectively. Using these error vectors and Eq
(3.23) that
a,=2ef
agen =@ A4 —1) ¢f
and

Bi=2(—4) e

B = 4 —-4)4 eird

. {C1}, we can obtain from Eq.

{C2a)

(C2b)

in which 4 is the real part of the eigenvalues i) ; of A, as defined in Eq. (B5) in Appendix B.

Since the third eigenvalue A, does not exist and £ = 0, as shown in Appendix B, Egs. (3.22b)
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and (3.22¢) give
a = ay; cos wAt{n—i) + a;; sin @A t{n—1) (C3a)

B,i= by;cos @Aht{n—1i) + by, sin wAt{n—1i) {C3nh)

By substituting Eq. {(C2a) into Eq. (C3a), we can solve for ay; and @,/
ay, =2 ef (C4a)

a4y, = Lé—l ed

knowing that A = cos @At and B = sin @A ¢ from Eq. (3.19). Similarly, we find

bii=20— A4) e (C4b)

_20-44 4

bzf B P

Substituting these parameters back into Eq. {3.22), we arrive ai Bq. {3.30), the cumulative dis-

placement error equation.
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APPENDIX D

MODIFIED NEWMARK EXPLICIT ALGORITHM
WITH NUMERICAL DAMPING

The modified Newmark explicit algorithm formulated in Eg. (7.10) can be written in a

recursive matrix form as

X1 = A X, (D1a)
where
d
X, =14t (Dib)
A[z a;
1
} i 3
_l_a’? Q> p 1_ a’ p
A= 5 1—-{14ea) Ty 3 (1+a) -
2
—0? “(l-i-oc}ﬂ.z-—p -'(1+a)%~"“~‘§-

Matrix A has eigenvalues

Aig=A; £ (4} — A1 (D2a)
and
ry=0
where
Alml_-(wa)ﬁ;_g— (D2b)

Ay=1-—« ﬁz——p
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To satisfy the stable oscillatory condition, we must have 47 < 4, < I, such that Ay are com-
plex conjugates and lkl,zf < 1, as discussed in Appendix B. When 4{ = A, the aigorithm
will have a non-oscillatory solution, but the solution will remain stable if 4, € 1. The condi-

tion Af < A,implies that

—~1-i—v‘1—i1+ajp 1+v1——21+a§p
< <
1 \Q\ 1 (DBa)

and from 4, < 1, we have

0 ;.,f_& (D3b)
o

If p is always negative and « is positive, we can combine the conditions in Egs. (D3a) and

(D3b) as

-
é—ﬂ—ggg}‘{"” €i+ajp (D4)
@

I+ o

This is the stability condition for the modified Mewmark explicit algorithm.



