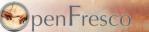
Cyber-Physical Systems

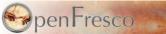
Andreas Schellenberg Stephen Mahin

NHERI UFEF & SimCenter User Workshop June 29-30, 2017 NHERI SimCenter

Outline of Presentation

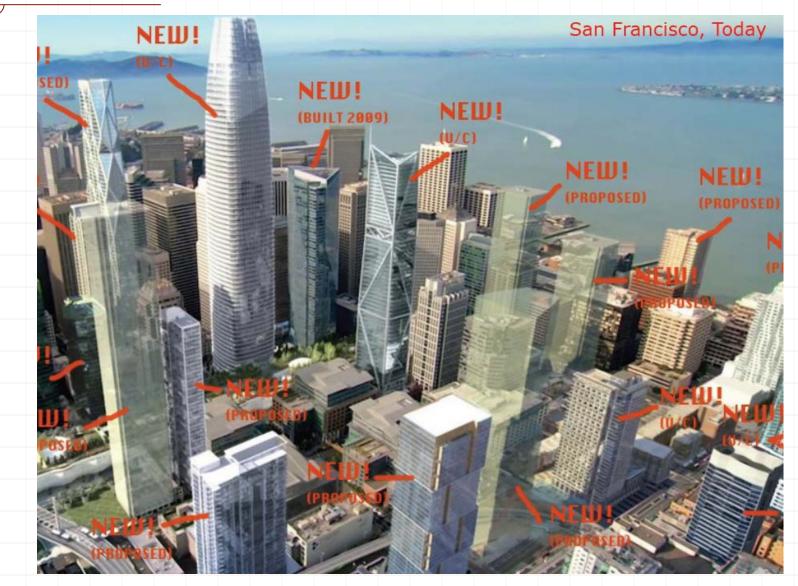

- 1. Motivation
- 2. Cyber-Physical Systems
- 3. Hybrid Simulation Testing Method
- 4. OpenFresco Middleware
- 5. BLWT Applications
 - 1. Aerodynamic Loading
 - 2. Ramp/Hold Wind HS
 - 3. Real-Time Wind HS
- 6. Summary & Conclusions

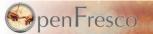
Shanghai,1950s



Shanghai, 2016

NHERI UFEF & SimCenter User Workshop

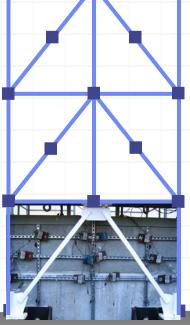

Motivation

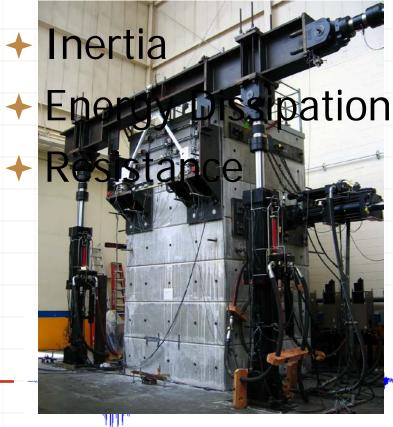

San Francisco, 1950s

Motivation

Motivation

- Progress in natural hazard engineering is driven by:
 - Urbanization
 - Architecture
 - Natural Hazards
- Improve resilience to natural hazards by advancing knowledge and understanding of the complex response and behavior of new and existing civil structures during and after such events
- Cyber-physical systems that integrate experimental testing with numerical simulation are invaluable and foster collaboration



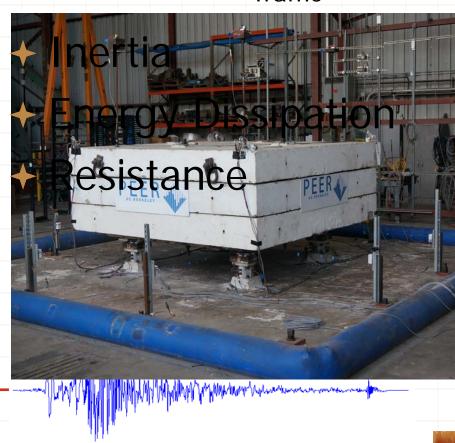

Cyber-Physical Systems (CPS)

A system where physical and software components are deeply intertwined, each operating on different spatial and temporal scales, exhibiting multiple and distinct behavioral modalities, and interacting with each other in a myriad of ways that change with context (from US NSF)

- Hybrid Simulation (HS), a flexible and economical experimental testing method, can be considered a cyber-physical system
- Control system aspects play a central role in CPS as well as HS

Structural Hybrid Simulation $\mathbf{M} \cdot \ddot{\mathbf{u}} + \mathbf{C} \cdot \dot{\mathbf{u}} + \mathbf{P}_r(\mathbf{u}) = \mathbf{P}(t)$

NHERI UFEF & SimCenter User Workshop


Struct. Hybrid Simulation **Dynamic Loading:** Seismic Wind $\mathbf{M} \cdot \ddot{\mathbf{u}} + \mathbf{C} \cdot \dot{\mathbf{u}} + \mathbf{P}_{\mathbf{r}}(\mathbf{u}) = \mathbf{P}(t)$ Blast/Impact Wave Traffic Static Loading: Gravity **Prestress** analytically add nonlinear geometric effects to measured resisting forces O III analytical model of structural energy dissipation and inertia physical model of structural resistance

SpenFresco

NHERI UFEF & SimCenter User Workshop

Hybrid Shake TableDynamic Loading: $M \cdot \ddot{u} + C \cdot \dot{u} + P_r(u, \dot{u}, \ddot{u}) = P(t)$ SeismicWindBlast/ImpactWaveTraffic

NHERI UFEF & SimCenter User Workshop 11

Hybrid Simulation

- Model the well understood parts of a structure in a finite element program on one or more computers (HPC possible)
- Leave the construction and testing of the highly nonlinear and/or numerically hard to model parts of the structure or loading conditions in one or more laboratories
- Can be considered as a conventional finite element analysis where physical models of some portions of the structure are embedded in the numerical model

Testing Methods

- Conventional hybrid simulation test where specimen is loaded using a ramp-andhold loading procedure
- Continuous test where specimen is loaded at a continuous slow to moderately slow rate to avoid load relaxations
- Real-time test where specimen is loaded at correct velocities to account for ratedependent material behaviors
- Geographically distributed network test

Equations of Motion

- 1. Slow test
- $\mathbf{M}\ddot{\mathbf{U}}_{i+1} + \mathbf{C}\breve{\mathbf{U}}_{i+1} + \mathbf{P}_{r}^{A}(\mathbf{U}_{i+1}, \ddot{\mathbf{U}}_{i+1}) + \mathbf{P}_{r}^{E}(\mathbf{U}_{i+1}) = \mathbf{P}_{i+1} \mathbf{P}_{0,i+1}$ 2. Rapid test
 - $\mathbf{P}_{\mathbf{r}}^{E}\left(\mathbf{U}_{i+1}\right) = \mathbf{P}_{\mathbf{r},i+1}^{E} \mathbf{M}^{E} \ddot{\mathbf{U}}_{i+1}^{E} \mathbf{C}^{E} \dot{\mathbf{U}}_{i+1}^{E}$
- 3. Real-time test
- $\mathbf{M}^{A} \ddot{\mathbf{U}}_{i+1} + \mathbf{C}^{A} \ddot{\mathbf{U}}_{i+1} + \mathbf{P}_{r}^{A} \left(\mathbf{U}_{i+1}, \ddot{\mathbf{U}}_{i+1} \right) + \mathbf{P}_{r}^{E} \left(\mathbf{U}_{i+1}, \ddot{\mathbf{U}}_{i+1}, \ddot{\mathbf{U}}_{i+1} \right) = \mathbf{P}_{i+1} \mathbf{P}_{0,i+1}$
 - $\mathbf{P}_{\mathbf{r}}^{E}\left(\mathbf{U}_{i+1}, \mathbf{\hat{U}}_{i+1}, \mathbf{\hat{U}}_{i+1}\right) = \mathbf{P}_{\mathbf{r},i+1}^{E} + \mathbf{M}^{E} \mathbf{\hat{U}}_{i+1}$

 $\mathbf{P}_{\mathbf{r}}^{E}\left(\mathbf{U}_{t,i+1},\mathbf{U}_{t,i+1},\mathbf{U}_{t,i+1}\right) = \mathbf{P}_{\mathbf{r},i+1}^{E} + \mathbf{M}^{E}\mathbf{U}_{t,i+1}$

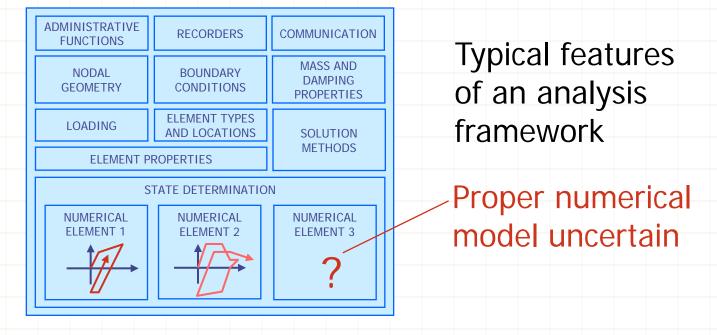
4. Hybrid shake table test

NHERI UFEF & SimCenter User Workshop

What is OpenFresco?

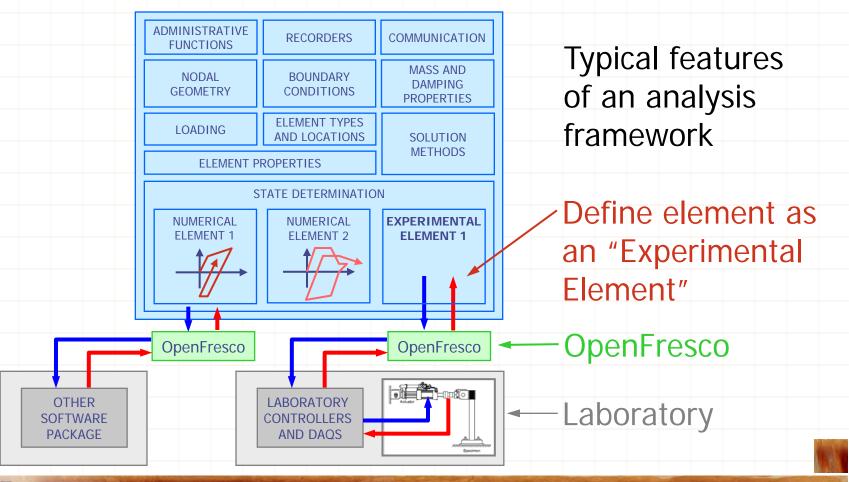
- + Open source Framework for Experimental Setup and Control
- + Secure, object oriented, network enabled "middleware" -- Pairs computer analysis software with laboratory control/dag systems and other software to connect components in cyberphysical systems:
- Computational Drivers
 - OpenSees
 - OpenFresco Express
 - Abaqus
 - LS-DYNA Ansys
 - Matlab UI-ŠimCor OpenFOAM
 - Simulink

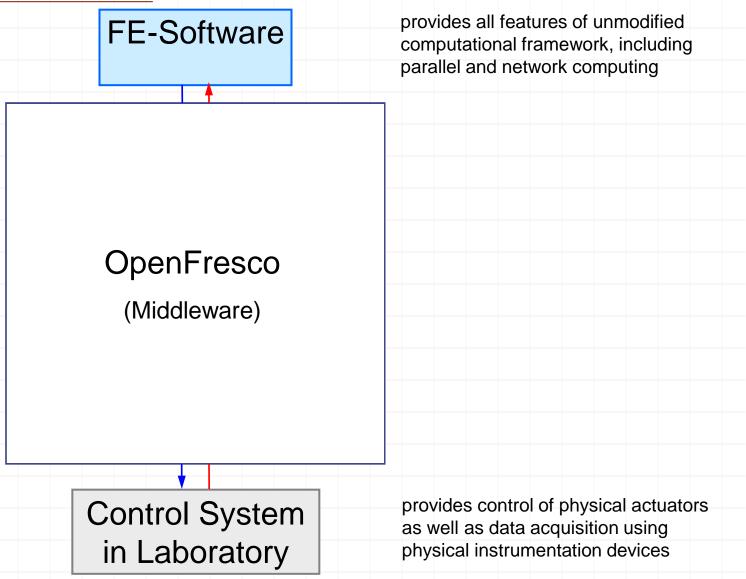
+ Control and DAQ Systems


- dSpace
- MTS
 - STS family
 - Flextest/CSI
 - Flextest/Scramnet
 - 469D
- National Instruments
- Pacific Instruments
- ADwin

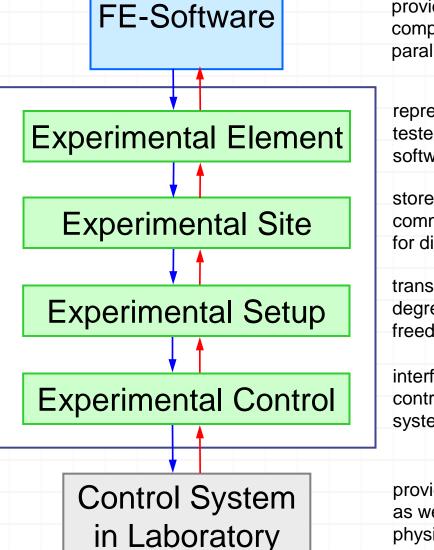
Why a Software Framework? Lack of a common framework for development and deployment of HS Problem specific implementations which are site and control system dependant Such highly customized software implementations are difficult to adapt to different cyber-physical problems

Need a robust, transparent, adaptable, and easily extensible software framework for research and deployment


Rethinking implementation strategies + Embed test specimen(s) in an existing computational framework of user's choice


NHERI UFEF & SimCenter User Workshop

Rethinking implementation strategies + Embed test specimen(s) in an existing computational framework of user's choice


Fresco

OpenFresco Components

OpenFresco Components

provides all features of unmodified computational framework, including parallel and network computing

represents the part of the structure that is physically tested and provides the interface between the FEsoftware and the experimental software framework

stores data and provides communication methods for distributed testing

transforms between the experimental element degrees of freedom and the actuator degrees of freedom (linear or non-linear transformations)

interfaces to the different control and data acquisition systems in the laboratories

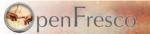
provides control of physical actuators as well as data acquisition using physical instrumentation devices

Testing Methods using BLWT

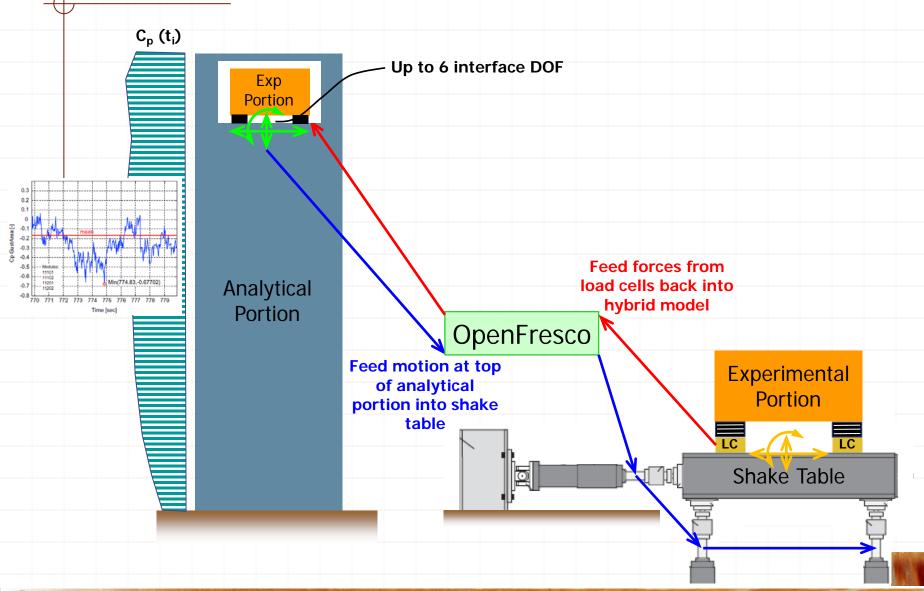
Aerodynamic Loads	Ramp/Hold Wind HS	Real-Time Wind HS
BLWT is used preceding HS to determine envelope Cp distribution histories on rigid model.	BLWT is used iteratively to determine statistical (min, max, x%tile,) envelope Cp distribution on rigid model.	BLWT is used to determine instantaneous loads on rigid envelope model.
Quasi-static or real-time structural hybrid simulation is then performed given these wind loads.	Static numerical analysis is performed to determine geometric change in envelope of structure.	Dynamic numerical analysis based on instantaneous wind loads is performed on structural model to adjust envelope of structure in real time.
Assumption that movement/deformation of structure has minimal effect on wind loads.	Use if geometric change is slow or for optimization problems (see B. Phillips).	Capture aero-elastic effects with more accurate structural model (see T. Wu).

NHERI UFEF & SimCenter User Workshop


Aerodynamic Loads + Struct. HS



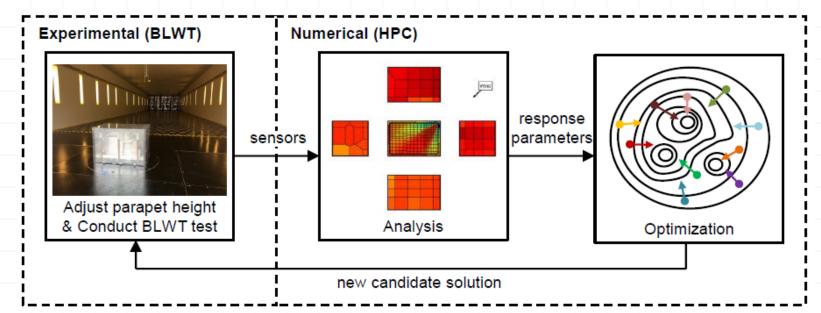
NHERI UFEF & SimCenter User Workshop


Aerodynamic Loads + Struct. HS

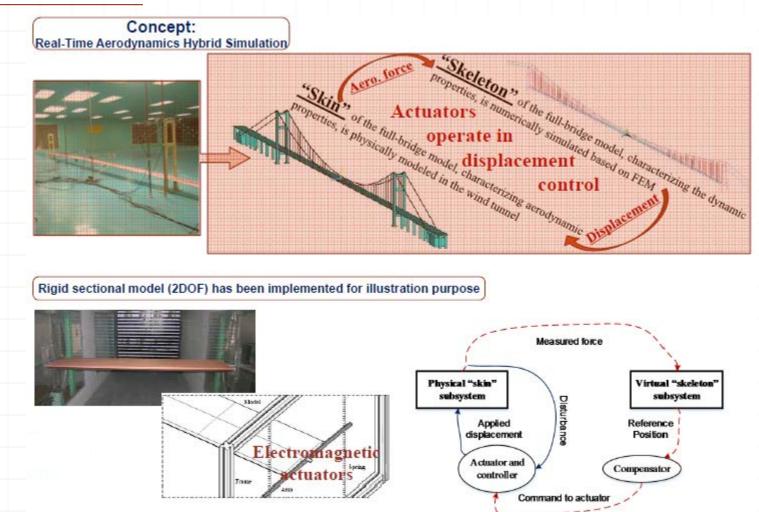
NHERI UFEF & SimCenter User Workshop 23

Aerodynamic Loads + Struct. HS

Similitude Laws for BLWT scaling

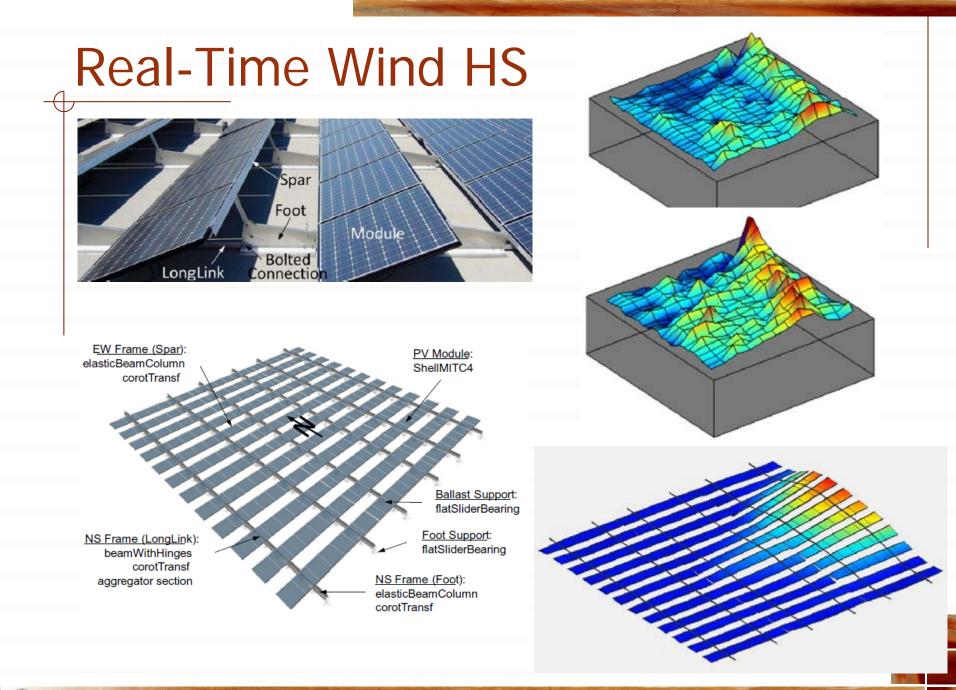

Similitude laws for fluid-elastic models with Froude number neglected.

Physical quantity	Dimension	Scaling factor with S _b , S _v , S _p	-	Scaling factor with $S_l = 1/30$, $S_v = 0.364$, $S_\rho = 1$
Length, <i>l</i>		S _I	S _I	0.033
Displacement, d	L	SI	S ₁	0.033
Velocity, v	LT^{-1}	S_{ν}	S_{ν}	0.364
Acceleration, a	LT^{-2}	$S_l^{-1}S_{\nu}^{2}$	$S_l^{-1}S_v^2$	3.978
Force, F	F	$\frac{S_l^2 S_v^2 S_\rho}{S_l S_v^{-1}}$	$S_l^2 S_v^2$	0.000147
Time, <i>t</i>	Т	$S_l S_{\nu}^{-1}$	$S_l S_{\nu}^{-1}$	0.092
Modulus, E	FL^{-2}	$S_{\nu}^{2}S_{\rho}$	S_{ν}^{2}	0.133
Pressure, p	FL^{-2}	$S_{\nu}^{2}S_{\rho}$	S_{ν}^{2}	0.133
Pressure Coeff, C_p	1	1	1	1
Stress, σ	FL^{-2}	$S_{\nu}^{2}S_{\rho}$	S_{ν}^{2}	0.133
Strain, <i>ε</i>	1	1	1	1
Strain-Rate, <i>i</i>	T^{-1}	$S_l^{-1}S_v$	$S_l^{-1}S_v$	10.924
Density, ρ	$FL^{-4}T^2$	S_{ρ}	1	1
Mass, m	$FL^{-1}T^2$	$S_l^{3}S_{\rho}$	S_l^3	0.000037
Damping, c	$FL^{-1}T$	$S_l^2 S_v S_\rho$	$S_l^2 S_v$	0.000405
Stiffness, k	FL^{-1}	$\frac{S_l S_v^2 S_\rho}{S_l S_v^{-1}}$	$S_l S_v^2$	0.004420
Period, T	Т		$S_l S_v^{-1}$	0.092
Frequency, f	T^{-1}	$S_l^{-1}S_v$	$S_l^{-1}S_v$	10.924



Ramp/Hold Wind HS

- Applicable if change in building envelope geometry is much slower than aerodynamic excitation
- Ideal for optimizing static building envelopes (see next presentation by Brian Phillips)



Real-Time Wind HS

by Teng Wu, Mettupalayam Sivaselvan

Spen Fresco

NHERI UFEF & SimCenter User Workshop 28

Summary & Conclusions

 Cyber-physical systems such as hybrid simulation testing methods are essential in moving towards improved resilience to natural hazards

 The application of hybrid simulation to wind engineering, especially BLWT testing, provides many exciting research opportunities that also foster collaboration
The OpenFreco middleware can readily be deployed and easily adapted for these new cyber-physical testing applications

Questions? Discussion

http://openfresco.berkeley.edu

